Fast statistical analysis of RC nets subject to manufacturing variabilities

This paper proposes a highly efficient methodology for the statistical analysis of RC nets subject to manufacturing variabilities, based on the combination of parameterized RC extraction and structure-preserving parameterized model order reduction methods. The sensitivity-based layout-to-circuit ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yu Bi, van der Kolk, Kees-Jan, Villena, Jorge Fernández, Silveira, Luís Miguel, van der Meijs, Nick
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a highly efficient methodology for the statistical analysis of RC nets subject to manufacturing variabilities, based on the combination of parameterized RC extraction and structure-preserving parameterized model order reduction methods. The sensitivity-based layout-to-circuit extraction generates first-order Taylor series approximations of resistances and capacitances with respect to multiple geometric parameter variations. This formulation becomes the input of the parameterized model order reduction, which exploits the explicit parameter dependence to produce a linear combination of multiple non-parameterized transfer functions weighted by the parameter variations. Such a formulation enables a fast computation of statistical properties such as the standard deviation of the transfer function given the process spreads of the technology. Both the extraction and the reduction techniques avoid any parameter sampling. Therefore, the proposed method achieves a significant speed up compared to the Monte Carlo approaches.
ISSN:1530-1591
1558-1101
DOI:10.1109/DATE.2011.5763012