Strong Secrecy on the Binary Erasure Wiretap Channel Using Large-Girth LDPC Codes
For an arbitrary degree distribution pair (DDP), we construct a sequence of low-density parity-check (LDPC) code ensembles with girth growing logarithmically in block-length using Ramanujan graphs. When the DDP has minimum left degree at least three, we show using density evolution analysis that the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2011-09, Vol.6 (3), p.585-594 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an arbitrary degree distribution pair (DDP), we construct a sequence of low-density parity-check (LDPC) code ensembles with girth growing logarithmically in block-length using Ramanujan graphs. When the DDP has minimum left degree at least three, we show using density evolution analysis that the expected bit-error probability of these ensembles, when passed through a binary erasure channel with erasure probability ϵ, decays as O (exp(-( c 1 ) n(c 2 ))) with the block-length n for positive constants c 1 and c 2 , as long as ϵ is less than the erasure threshold ϵ th of the DDP. This guarantees that the coset coding scheme using the dual sequence provides strong secrecy over the binary erasure wiretap channel for erasure probabilities greater than 1-ϵ th . |
---|---|
ISSN: | 1556-6013 1556-6021 |
DOI: | 10.1109/TIFS.2011.2148715 |