Compressed sensing using generalized polygon samplers
We propose new deterministic low-storage constructions of compressive sampling matrices based on classical finite-geometry generalized polygons. For the noiseless measurements case, we develop a novel exact-recovery algorithm for strictly sparse signals that utilizes the geometry properties of gener...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose new deterministic low-storage constructions of compressive sampling matrices based on classical finite-geometry generalized polygons. For the noiseless measurements case, we develop a novel exact-recovery algorithm for strictly sparse signals that utilizes the geometry properties of generalized polygons and exhibits complexity linear in the sparsity value. In the presence of measurement noise, recovery of the generalized-polygon sampled signals can be carried out effectively using a belief propagation algorithm. |
---|---|
ISSN: | 1058-6393 2576-2303 |
DOI: | 10.1109/ACSSC.2010.5757535 |