A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting
A piezoelectric transducer for harvesting energy from ambient mechanical vibrations/strains under pressure condition was developed. The proposed transducer was made of two ring-type piezoelectric stacks, one pair of bow-shaped elastic plates, and one shaft that pre-compresses them. This transducer w...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2011-04, Vol.58 (4), p.698-703 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A piezoelectric transducer for harvesting energy from ambient mechanical vibrations/strains under pressure condition was developed. The proposed transducer was made of two ring-type piezoelectric stacks, one pair of bow-shaped elastic plates, and one shaft that pre-compresses them. This transducer works in flex-compressive (F-C) mode, which is different from a conventional flex-tensional (F-T) one, to transfer a transversely applied force F into an amplified longitudinal force N pressing against the two piezo-stacks via the two bow-shaped elastic plates, generating a large electric voltage output via piezoelectric effect. Our experimental results show that without an electric load, an F-C mode piezo-transducer could generate a maximum electric voltage output of up to 110 Vpp, and with an electric load of 40 kΩ, it a maximum power output of 14.6 mW under an acceleration excitation of 1 g peak-peak at the resonance frequency of 87 Hz. |
---|---|
ISSN: | 0885-3010 1525-8955 |
DOI: | 10.1109/TUFFC.2011.1862 |