FREE-p: Protecting non-volatile memory against both hard and soft errors

Emerging non-volatile memories such as phase-change RAM (PCRAM) offer significant advantages but suffer from write endurance problems. However, prior solutions are oblivious to soft errors (recently raised as a potential issue even for PCRAM) and are incompatible with high-level fault tolerance tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Doe Hyun Yoon, Muralimanohar, N, Jichuan Chang, Ranganathan, P, Jouppi, N P, Erez, M
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emerging non-volatile memories such as phase-change RAM (PCRAM) offer significant advantages but suffer from write endurance problems. However, prior solutions are oblivious to soft errors (recently raised as a potential issue even for PCRAM) and are incompatible with high-level fault tolerance techniques such as chipkill. To additionally address such failures requires unnecessarily high costs for techniques that focus singularly on wear-out tolerance. In this paper, we propose fine-grained remapping with ECC and embedded pointers (FREE-p). FREE-p remaps fine-grained worn-out NVRAM blocks without requiring large dedicated storage. We discuss how FREE-p protects against both hard and soft errors and can be extended to chipkill. Further, FREE-p can be implemented purely in the memory controller, avoiding custom NVRAM devices. In addition to these benefits, FREE-p increases NVRAM lifetime by up to 26% over the state-of-the-art even with severe process variation while performance degradation is less than 2% for the initial 7 years.
ISSN:1530-0897
2378-203X
DOI:10.1109/HPCA.2011.5749752