A 57mW embedded mixed-mode neuro-fuzzy accelerator for intelligent multi-core processor

Artificial intelligence (Al) functions are becoming important in smartphones, portable game consoles, and robots for such intelligent applications as object detection, recognition, and human-computer interfaces (HCI). Most of these functions are realized in software with neural networks (NN) and fuz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jinwook Oh, Junyoung Park, Gyeonghoon Kim, Seungjin Lee, Hoi-Jun Yoo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artificial intelligence (Al) functions are becoming important in smartphones, portable game consoles, and robots for such intelligent applications as object detection, recognition, and human-computer interfaces (HCI). Most of these functions are realized in software with neural networks (NN) and fuzzy systems (FS), but due to power and speed limitations, a hardware solution is needed. For example, software implementations of object-recognition algorithms like SIFT consume ~10W and ~1s delay even on a 2.4GHz PC CPU. Previously, GPGPUs or ASICs were used to realize Al functions. But GPGPUs just emulate NN/FS with many processing elements to speed up the software, while still consuming a large amount of power. On the other hand, low-power ASICs have been mostly dedicated stand-alone processors, not suitable to be ported into many different systems. This paper presents a portable embedded neuro-fuzzy accelerator: the intelligent reconfigurable integrated system (IRIS), which realizes low power consumption and high-speed recognition, prediction and optimization for Al applications.
ISSN:0193-6530
2376-8606
DOI:10.1109/ISSCC.2011.5746250