Robust least squares and applications

We consider least-squares problems where the coefficient matrices A,b are unknown-but-bounded. We minimize the worst-case residual error using (convex) second-order cone programming (SOCP), yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: El Ghaoui, L., Lebret, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider least-squares problems where the coefficient matrices A,b are unknown-but-bounded. We minimize the worst-case residual error using (convex) second-order cone programming (SOCP), yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpreted as a Tikhonov regularization procedure, with the advantage that it provides an exact bound on the robustness of the solution, and a rigorous way to compute the regularization parameter. When the perturbation has a known (e.g. Toeplitz) structure, the same problem can be solved in polynomial-time using semidefinite programming (SDP). We also consider the case when A,b are rational functions of an unknown-but-bounded perturbation vector. We show how to minimize (via SDP) upper bounds on the optimal worst-case residual. We provide numerical examples, including one from robust identification and one from robust interpolation.
ISSN:0191-2216
DOI:10.1109/CDC.1996.574307