Rapid layout pattern classification
Printability of layout objects becomes increasingly dependent on neighboring shapes within a larger and larger context window. In this paper, we propose a two-level hotspot pattern classification methodology that examines both central and peripheral patterns. Accuracy and runtime enhancement techniq...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Printability of layout objects becomes increasingly dependent on neighboring shapes within a larger and larger context window. In this paper, we propose a two-level hotspot pattern classification methodology that examines both central and peripheral patterns. Accuracy and runtime enhancement techniques are proposed, making our detection methodology robust and efficient as a fast physical verification tool that can be applied during early design stages to large-scale designs. We position our method as an approximate detection solution, similar to pattern matching-based tools widely adopted by the industry. In addition, our analyses of classification results reveal that the majority of non-hotspots falsely predicted as hotspots have printed CD barely over the minimum allowable CD threshold. Our method is verified on several 45 nm and 32 nm industrial designs. |
---|---|
ISSN: | 2153-6961 2153-697X |
DOI: | 10.1109/ASPDAC.2011.5722295 |