Accelerating the Nussinov RNA folding algorithm with CUDA/GPU
Graphics processing units (GPU) on commodity video cards have evolved into powerful computational devices. The RNA secondary structure arises from the primary structure and a backbone of canonical, Watson-Crick base pairings (A-U, C-G), and to a lesser extent, the G-U pairing. Early computational wo...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphics processing units (GPU) on commodity video cards have evolved into powerful computational devices. The RNA secondary structure arises from the primary structure and a backbone of canonical, Watson-Crick base pairings (A-U, C-G), and to a lesser extent, the G-U pairing. Early computational work by Nussinov formulated the problem of RNA secondary structure prediction as a maximization of the number of paired bases, which led to a simplified problem amenable to a dynamic programming solution for O(n 3 ) serial time. This article describes a GPU implementation of the Nussinov dynamic programming. Computation results show that the GPU implementation is up to 290 times faster than the CPU. |
---|---|
ISSN: | 2162-7843 |
DOI: | 10.1109/ISSPIT.2010.5711746 |