Vessel Tree Segmentation in Presence of Interstitial Lung Disease in MDCT

The automated segmentation of vessel tree structures is a crucial preprocessing stage in computer aided diagnosis (CAD) schemes of interstitial lung disease (ILD) patterns in multidetector computed tomography (MDCT). The accuracy of such preprocessing stages is expected to influence the accuracy of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2011-03, Vol.15 (2), p.214-220
Hauptverfasser: Korfiatis, Panayiotis D, Kalogeropoulou, Cristina, Karahaliou, Anna N, Kazantzi, A D, Costaridou, L I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The automated segmentation of vessel tree structures is a crucial preprocessing stage in computer aided diagnosis (CAD) schemes of interstitial lung disease (ILD) patterns in multidetector computed tomography (MDCT). The accuracy of such preprocessing stages is expected to influence the accuracy of lung CAD schemes. Although algorithms aimed at improving the accuracy of lung fields segmentation in presence of ILD have been reported, the corresponding vessel tree segmentation stage is under-researched. Furthermore, previously reported vessel tree segmentation methods have only dealt with normal lung parenchyma. In this paper, an automated vessel tree segmentation scheme is proposed, adapted to the presence of pathologies affecting lung parenchyma. The first stage of the method accounts for a recently proposed method utilizing a 3-D multiscale vessel enhancement filter based on eigenvalue analysis of the Hessian matrix and on unsupervised segmentation. The second stage of the method is a texture-based voxel classification refinement to correct possible over-segmentation. The performance of the proposed scheme, and of the previously reported technique, in vessel tree segmentation was evaluated by means of area overlap (previously reported: 0.715 ± 0.082, proposed: 0.931 ± 0.027), true positive fraction (previously reported: 0.968 ± 0.019, proposed: 0.935 ± 0.036) and false positive fraction (previously reported: 0.400 ± 0.181, proposed: 0.074 ± 0.031) on a dataset of 210 axial slices originating from seven ILD affected patient scans (used for performance evaluation out of 15). The pro posed method demonstrated a statistically significantly (p
ISSN:1089-7771
2168-2194
1558-0032
2168-2208
DOI:10.1109/TITB.2011.2112668