HAMA: An Efficient Matrix Computation with the MapReduce Framework

Various scientific computations have become so complex, and thus computation tools play an important role. In this paper, we explore the state-of-the-art framework providing high-level matrix computation primitives with MapReduce through the case study approach, and demonstrate these primitives with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sangwon Seo, Yoon, Edward J, Jaehong Kim, Seongwook Jin, Jin-Soo Kim, Seungryoul Maeng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Various scientific computations have become so complex, and thus computation tools play an important role. In this paper, we explore the state-of-the-art framework providing high-level matrix computation primitives with MapReduce through the case study approach, and demonstrate these primitives with different computation engines to show the performance and scalability. We believe the opportunity for using MapReduce in scientific computation is even more promising than the success to date in the parallel systems literature.
DOI:10.1109/CloudCom.2010.17