Power-Saving in Large-Scale Storage Systems with Data Migration

We present a power-saving method for large-scale distributed storage systems. The key idea is to use virtual nodes and migrate them dynamically so as to skew the workload towards a small number of disks while not overloading them. Our proposed method consists of two kinds of algorithms, one for gath...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hasebe, K, Niwa, Tatsuya, Sugiki, A, Kato, K
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a power-saving method for large-scale distributed storage systems. The key idea is to use virtual nodes and migrate them dynamically so as to skew the workload towards a small number of disks while not overloading them. Our proposed method consists of two kinds of algorithms, one for gathering or spreading virtual nodes according to the daily variation of workloads so that the active disks are reduced to a minimum, the other for coping with the changes in the popularity of data over a longer period. For this dynamic migration, data stored in virtual nodes are managed by a distributed hash table. Furthermore, to improve the reliability as well as to reduce the migration cost, we also propose an extension of our method by introducing a replication mechanism. The performance of our method is measured both by simulation and a prototype implementation. From the experiments, we observed that our method skews the workload so that the average load for the active physical nodes as a function of the overall capacity is 67%. At the same time, we maintain a preferred response time by setting a suitable maximum workload for each physical node.
DOI:10.1109/CloudCom.2010.105