Evaluation of MapReduce for Gridding LIDAR Data

The MapReduce programming model, introduced by Google, has become popular over the past few years as a mechanism for processing large amounts of data, using shared-nothing parallelism. In this paper, we investigate the use of MapReduce technology for a local gridding algorithm for the generation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Krishnan, S, Baru, C, Crosby, C
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue
container_start_page 33
container_title
container_volume
creator Krishnan, S
Baru, C
Crosby, C
description The MapReduce programming model, introduced by Google, has become popular over the past few years as a mechanism for processing large amounts of data, using shared-nothing parallelism. In this paper, we investigate the use of MapReduce technology for a local gridding algorithm for the generation of Digital Elevation Models (DEM). The local gridding algorithm utilizes the elevation information from LIDAR (Light, Detection, and Ranging) measurements contained within a circular search area to compute the elevation of each grid cell. The method is data parallel, lending itself to implementation using the MapReduce model. Here, we compare our initial C++ implementation of the gridding algorithm to a MapReduce-based implementation, and present observations on the performance (in particular, price/performance) and the implementation complexity. We also discuss the applicability of MapReduce technologies for related applications.
doi_str_mv 10.1109/CloudCom.2010.34
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5708431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5708431</ieee_id><sourcerecordid>5708431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-b54e4a46606de22d5e105423faa45a68c55349f8b03d7568cf52f2f7b941986f3</originalsourceid><addsrcrecordid>eNotjEtLw0AURkdEUGv2gpv5A2nvzNw7j2VJay1EhKLrMsnMSCRtSh6C_96AfpvDOYuPsUcBSyHArYq2m0LRnZYS5qTwimXOWDDaESqQeM3uBUpEh0DylmXD8AXzSBrj7B1bbb99O_mx6c68S_zVXw4xTHXkqev5rm9CaM6fvNxv1ge-8aN_YDfJt0PM_rlgH8_b9-IlL992-2Jd5rUENeYVYUSPWoMOUcpAUQChVMl7JK9tTaTQJVuBCoZmTySTTKZyKJzVSS3Y099vE2M8Xvrm5PufIxmwqIT6BQ6_QwY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluation of MapReduce for Gridding LIDAR Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Krishnan, S ; Baru, C ; Crosby, C</creator><creatorcontrib>Krishnan, S ; Baru, C ; Crosby, C</creatorcontrib><description>The MapReduce programming model, introduced by Google, has become popular over the past few years as a mechanism for processing large amounts of data, using shared-nothing parallelism. In this paper, we investigate the use of MapReduce technology for a local gridding algorithm for the generation of Digital Elevation Models (DEM). The local gridding algorithm utilizes the elevation information from LIDAR (Light, Detection, and Ranging) measurements contained within a circular search area to compute the elevation of each grid cell. The method is data parallel, lending itself to implementation using the MapReduce model. Here, we compare our initial C++ implementation of the gridding algorithm to a MapReduce-based implementation, and present observations on the performance (in particular, price/performance) and the implementation complexity. We also discuss the applicability of MapReduce technologies for related applications.</description><identifier>ISBN: 1424494052</identifier><identifier>ISBN: 9781424494057</identifier><identifier>EISBN: 9780769543024</identifier><identifier>EISBN: 0769543022</identifier><identifier>DOI: 10.1109/CloudCom.2010.34</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Digital elevation models ; Gridding ; Inference algorithms ; Laser radar ; LIDAR ; MapReduce ; Merging ; Programming ; Surface topography</subject><ispartof>2010 IEEE Second International Conference on Cloud Computing Technology and Science, 2010, p.33-40</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-b54e4a46606de22d5e105423faa45a68c55349f8b03d7568cf52f2f7b941986f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5708431$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5708431$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krishnan, S</creatorcontrib><creatorcontrib>Baru, C</creatorcontrib><creatorcontrib>Crosby, C</creatorcontrib><title>Evaluation of MapReduce for Gridding LIDAR Data</title><title>2010 IEEE Second International Conference on Cloud Computing Technology and Science</title><addtitle>CLOUDCOM</addtitle><description>The MapReduce programming model, introduced by Google, has become popular over the past few years as a mechanism for processing large amounts of data, using shared-nothing parallelism. In this paper, we investigate the use of MapReduce technology for a local gridding algorithm for the generation of Digital Elevation Models (DEM). The local gridding algorithm utilizes the elevation information from LIDAR (Light, Detection, and Ranging) measurements contained within a circular search area to compute the elevation of each grid cell. The method is data parallel, lending itself to implementation using the MapReduce model. Here, we compare our initial C++ implementation of the gridding algorithm to a MapReduce-based implementation, and present observations on the performance (in particular, price/performance) and the implementation complexity. We also discuss the applicability of MapReduce technologies for related applications.</description><subject>Arrays</subject><subject>Digital elevation models</subject><subject>Gridding</subject><subject>Inference algorithms</subject><subject>Laser radar</subject><subject>LIDAR</subject><subject>MapReduce</subject><subject>Merging</subject><subject>Programming</subject><subject>Surface topography</subject><isbn>1424494052</isbn><isbn>9781424494057</isbn><isbn>9780769543024</isbn><isbn>0769543022</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtLw0AURkdEUGv2gpv5A2nvzNw7j2VJay1EhKLrMsnMSCRtSh6C_96AfpvDOYuPsUcBSyHArYq2m0LRnZYS5qTwimXOWDDaESqQeM3uBUpEh0DylmXD8AXzSBrj7B1bbb99O_mx6c68S_zVXw4xTHXkqev5rm9CaM6fvNxv1ge-8aN_YDfJt0PM_rlgH8_b9-IlL992-2Jd5rUENeYVYUSPWoMOUcpAUQChVMl7JK9tTaTQJVuBCoZmTySTTKZyKJzVSS3Y099vE2M8Xvrm5PufIxmwqIT6BQ6_QwY</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Krishnan, S</creator><creator>Baru, C</creator><creator>Crosby, C</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Evaluation of MapReduce for Gridding LIDAR Data</title><author>Krishnan, S ; Baru, C ; Crosby, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-b54e4a46606de22d5e105423faa45a68c55349f8b03d7568cf52f2f7b941986f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Arrays</topic><topic>Digital elevation models</topic><topic>Gridding</topic><topic>Inference algorithms</topic><topic>Laser radar</topic><topic>LIDAR</topic><topic>MapReduce</topic><topic>Merging</topic><topic>Programming</topic><topic>Surface topography</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, S</creatorcontrib><creatorcontrib>Baru, C</creatorcontrib><creatorcontrib>Crosby, C</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishnan, S</au><au>Baru, C</au><au>Crosby, C</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluation of MapReduce for Gridding LIDAR Data</atitle><btitle>2010 IEEE Second International Conference on Cloud Computing Technology and Science</btitle><stitle>CLOUDCOM</stitle><date>2010-11</date><risdate>2010</risdate><spage>33</spage><epage>40</epage><pages>33-40</pages><isbn>1424494052</isbn><isbn>9781424494057</isbn><eisbn>9780769543024</eisbn><eisbn>0769543022</eisbn><abstract>The MapReduce programming model, introduced by Google, has become popular over the past few years as a mechanism for processing large amounts of data, using shared-nothing parallelism. In this paper, we investigate the use of MapReduce technology for a local gridding algorithm for the generation of Digital Elevation Models (DEM). The local gridding algorithm utilizes the elevation information from LIDAR (Light, Detection, and Ranging) measurements contained within a circular search area to compute the elevation of each grid cell. The method is data parallel, lending itself to implementation using the MapReduce model. Here, we compare our initial C++ implementation of the gridding algorithm to a MapReduce-based implementation, and present observations on the performance (in particular, price/performance) and the implementation complexity. We also discuss the applicability of MapReduce technologies for related applications.</abstract><pub>IEEE</pub><doi>10.1109/CloudCom.2010.34</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424494052
ispartof 2010 IEEE Second International Conference on Cloud Computing Technology and Science, 2010, p.33-40
issn
language eng
recordid cdi_ieee_primary_5708431
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arrays
Digital elevation models
Gridding
Inference algorithms
Laser radar
LIDAR
MapReduce
Merging
Programming
Surface topography
title Evaluation of MapReduce for Gridding LIDAR Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluation%20of%20MapReduce%20for%20Gridding%20LIDAR%20Data&rft.btitle=2010%20IEEE%20Second%20International%20Conference%20on%20Cloud%20Computing%20Technology%20and%20Science&rft.au=Krishnan,%20S&rft.date=2010-11&rft.spage=33&rft.epage=40&rft.pages=33-40&rft.isbn=1424494052&rft.isbn_list=9781424494057&rft_id=info:doi/10.1109/CloudCom.2010.34&rft_dat=%3Cieee_6IE%3E5708431%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769543024&rft.eisbn_list=0769543022&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5708431&rfr_iscdi=true