Evaluation of MapReduce for Gridding LIDAR Data
The MapReduce programming model, introduced by Google, has become popular over the past few years as a mechanism for processing large amounts of data, using shared-nothing parallelism. In this paper, we investigate the use of MapReduce technology for a local gridding algorithm for the generation of...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | |
container_start_page | 33 |
container_title | |
container_volume | |
creator | Krishnan, S Baru, C Crosby, C |
description | The MapReduce programming model, introduced by Google, has become popular over the past few years as a mechanism for processing large amounts of data, using shared-nothing parallelism. In this paper, we investigate the use of MapReduce technology for a local gridding algorithm for the generation of Digital Elevation Models (DEM). The local gridding algorithm utilizes the elevation information from LIDAR (Light, Detection, and Ranging) measurements contained within a circular search area to compute the elevation of each grid cell. The method is data parallel, lending itself to implementation using the MapReduce model. Here, we compare our initial C++ implementation of the gridding algorithm to a MapReduce-based implementation, and present observations on the performance (in particular, price/performance) and the implementation complexity. We also discuss the applicability of MapReduce technologies for related applications. |
doi_str_mv | 10.1109/CloudCom.2010.34 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5708431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5708431</ieee_id><sourcerecordid>5708431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-b54e4a46606de22d5e105423faa45a68c55349f8b03d7568cf52f2f7b941986f3</originalsourceid><addsrcrecordid>eNotjEtLw0AURkdEUGv2gpv5A2nvzNw7j2VJay1EhKLrMsnMSCRtSh6C_96AfpvDOYuPsUcBSyHArYq2m0LRnZYS5qTwimXOWDDaESqQeM3uBUpEh0DylmXD8AXzSBrj7B1bbb99O_mx6c68S_zVXw4xTHXkqev5rm9CaM6fvNxv1ge-8aN_YDfJt0PM_rlgH8_b9-IlL992-2Jd5rUENeYVYUSPWoMOUcpAUQChVMl7JK9tTaTQJVuBCoZmTySTTKZyKJzVSS3Y099vE2M8Xvrm5PufIxmwqIT6BQ6_QwY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluation of MapReduce for Gridding LIDAR Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Krishnan, S ; Baru, C ; Crosby, C</creator><creatorcontrib>Krishnan, S ; Baru, C ; Crosby, C</creatorcontrib><description>The MapReduce programming model, introduced by Google, has become popular over the past few years as a mechanism for processing large amounts of data, using shared-nothing parallelism. In this paper, we investigate the use of MapReduce technology for a local gridding algorithm for the generation of Digital Elevation Models (DEM). The local gridding algorithm utilizes the elevation information from LIDAR (Light, Detection, and Ranging) measurements contained within a circular search area to compute the elevation of each grid cell. The method is data parallel, lending itself to implementation using the MapReduce model. Here, we compare our initial C++ implementation of the gridding algorithm to a MapReduce-based implementation, and present observations on the performance (in particular, price/performance) and the implementation complexity. We also discuss the applicability of MapReduce technologies for related applications.</description><identifier>ISBN: 1424494052</identifier><identifier>ISBN: 9781424494057</identifier><identifier>EISBN: 9780769543024</identifier><identifier>EISBN: 0769543022</identifier><identifier>DOI: 10.1109/CloudCom.2010.34</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Digital elevation models ; Gridding ; Inference algorithms ; Laser radar ; LIDAR ; MapReduce ; Merging ; Programming ; Surface topography</subject><ispartof>2010 IEEE Second International Conference on Cloud Computing Technology and Science, 2010, p.33-40</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-b54e4a46606de22d5e105423faa45a68c55349f8b03d7568cf52f2f7b941986f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5708431$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5708431$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krishnan, S</creatorcontrib><creatorcontrib>Baru, C</creatorcontrib><creatorcontrib>Crosby, C</creatorcontrib><title>Evaluation of MapReduce for Gridding LIDAR Data</title><title>2010 IEEE Second International Conference on Cloud Computing Technology and Science</title><addtitle>CLOUDCOM</addtitle><description>The MapReduce programming model, introduced by Google, has become popular over the past few years as a mechanism for processing large amounts of data, using shared-nothing parallelism. In this paper, we investigate the use of MapReduce technology for a local gridding algorithm for the generation of Digital Elevation Models (DEM). The local gridding algorithm utilizes the elevation information from LIDAR (Light, Detection, and Ranging) measurements contained within a circular search area to compute the elevation of each grid cell. The method is data parallel, lending itself to implementation using the MapReduce model. Here, we compare our initial C++ implementation of the gridding algorithm to a MapReduce-based implementation, and present observations on the performance (in particular, price/performance) and the implementation complexity. We also discuss the applicability of MapReduce technologies for related applications.</description><subject>Arrays</subject><subject>Digital elevation models</subject><subject>Gridding</subject><subject>Inference algorithms</subject><subject>Laser radar</subject><subject>LIDAR</subject><subject>MapReduce</subject><subject>Merging</subject><subject>Programming</subject><subject>Surface topography</subject><isbn>1424494052</isbn><isbn>9781424494057</isbn><isbn>9780769543024</isbn><isbn>0769543022</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtLw0AURkdEUGv2gpv5A2nvzNw7j2VJay1EhKLrMsnMSCRtSh6C_96AfpvDOYuPsUcBSyHArYq2m0LRnZYS5qTwimXOWDDaESqQeM3uBUpEh0DylmXD8AXzSBrj7B1bbb99O_mx6c68S_zVXw4xTHXkqev5rm9CaM6fvNxv1ge-8aN_YDfJt0PM_rlgH8_b9-IlL992-2Jd5rUENeYVYUSPWoMOUcpAUQChVMl7JK9tTaTQJVuBCoZmTySTTKZyKJzVSS3Y099vE2M8Xvrm5PufIxmwqIT6BQ6_QwY</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Krishnan, S</creator><creator>Baru, C</creator><creator>Crosby, C</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Evaluation of MapReduce for Gridding LIDAR Data</title><author>Krishnan, S ; Baru, C ; Crosby, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-b54e4a46606de22d5e105423faa45a68c55349f8b03d7568cf52f2f7b941986f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Arrays</topic><topic>Digital elevation models</topic><topic>Gridding</topic><topic>Inference algorithms</topic><topic>Laser radar</topic><topic>LIDAR</topic><topic>MapReduce</topic><topic>Merging</topic><topic>Programming</topic><topic>Surface topography</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, S</creatorcontrib><creatorcontrib>Baru, C</creatorcontrib><creatorcontrib>Crosby, C</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishnan, S</au><au>Baru, C</au><au>Crosby, C</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluation of MapReduce for Gridding LIDAR Data</atitle><btitle>2010 IEEE Second International Conference on Cloud Computing Technology and Science</btitle><stitle>CLOUDCOM</stitle><date>2010-11</date><risdate>2010</risdate><spage>33</spage><epage>40</epage><pages>33-40</pages><isbn>1424494052</isbn><isbn>9781424494057</isbn><eisbn>9780769543024</eisbn><eisbn>0769543022</eisbn><abstract>The MapReduce programming model, introduced by Google, has become popular over the past few years as a mechanism for processing large amounts of data, using shared-nothing parallelism. In this paper, we investigate the use of MapReduce technology for a local gridding algorithm for the generation of Digital Elevation Models (DEM). The local gridding algorithm utilizes the elevation information from LIDAR (Light, Detection, and Ranging) measurements contained within a circular search area to compute the elevation of each grid cell. The method is data parallel, lending itself to implementation using the MapReduce model. Here, we compare our initial C++ implementation of the gridding algorithm to a MapReduce-based implementation, and present observations on the performance (in particular, price/performance) and the implementation complexity. We also discuss the applicability of MapReduce technologies for related applications.</abstract><pub>IEEE</pub><doi>10.1109/CloudCom.2010.34</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424494052 |
ispartof | 2010 IEEE Second International Conference on Cloud Computing Technology and Science, 2010, p.33-40 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5708431 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Arrays Digital elevation models Gridding Inference algorithms Laser radar LIDAR MapReduce Merging Programming Surface topography |
title | Evaluation of MapReduce for Gridding LIDAR Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluation%20of%20MapReduce%20for%20Gridding%20LIDAR%20Data&rft.btitle=2010%20IEEE%20Second%20International%20Conference%20on%20Cloud%20Computing%20Technology%20and%20Science&rft.au=Krishnan,%20S&rft.date=2010-11&rft.spage=33&rft.epage=40&rft.pages=33-40&rft.isbn=1424494052&rft.isbn_list=9781424494057&rft_id=info:doi/10.1109/CloudCom.2010.34&rft_dat=%3Cieee_6IE%3E5708431%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769543024&rft.eisbn_list=0769543022&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5708431&rfr_iscdi=true |