Evaluation of MapReduce for Gridding LIDAR Data
The MapReduce programming model, introduced by Google, has become popular over the past few years as a mechanism for processing large amounts of data, using shared-nothing parallelism. In this paper, we investigate the use of MapReduce technology for a local gridding algorithm for the generation of...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The MapReduce programming model, introduced by Google, has become popular over the past few years as a mechanism for processing large amounts of data, using shared-nothing parallelism. In this paper, we investigate the use of MapReduce technology for a local gridding algorithm for the generation of Digital Elevation Models (DEM). The local gridding algorithm utilizes the elevation information from LIDAR (Light, Detection, and Ranging) measurements contained within a circular search area to compute the elevation of each grid cell. The method is data parallel, lending itself to implementation using the MapReduce model. Here, we compare our initial C++ implementation of the gridding algorithm to a MapReduce-based implementation, and present observations on the performance (in particular, price/performance) and the implementation complexity. We also discuss the applicability of MapReduce technologies for related applications. |
---|---|
DOI: | 10.1109/CloudCom.2010.34 |