Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model

In this paper, we propose a method for restoring the missing or corrupted observations of nonstationary sinusoidal signals which are often encountered in music and speech applications. To model nonstationary signals, we use a time-varying sinusoidal model which is obtained by extending the static si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2011-09, Vol.19 (7), p.1986-1998
Hauptverfasser: Nielsen, J. K., Christensen, M. G., Cemgil, A. T., Godsill, S. J., Jensen, S. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1998
container_issue 7
container_start_page 1986
container_title IEEE transactions on audio, speech, and language processing
container_volume 19
creator Nielsen, J. K.
Christensen, M. G.
Cemgil, A. T.
Godsill, S. J.
Jensen, S. J.
description In this paper, we propose a method for restoring the missing or corrupted observations of nonstationary sinusoidal signals which are often encountered in music and speech applications. To model nonstationary signals, we use a time-varying sinusoidal model which is obtained by extending the static sinusoidal model into a dynamic sinusoidal model. In this model, the in-phase and quadrature components of the sinusoids are modeled as first-order Gauss-Markov processes. The inference scheme for the model parameters and missing observations is formulated in a Bayesian framework and is based on a Markov chain Monte Carlo method known as Gibbs sampler. We focus on the parameter estimation in the dynamic sinusoidal model since this constitutes the core of model-based interpolation. In the simulations, we first investigate the applicability of the model and then demonstrate the inference scheme by applying it to the restoration of lost audio packets on a packet-based network. The results show that the proposed method is a reasonable inference scheme for estimating unknown signal parameters and interpolating gaps consisting of missing/corrupted signal segments.
doi_str_mv 10.1109/TASL.2011.2108285
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_5701660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5701660</ieee_id><sourcerecordid>24484862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-c5df4749a4189dffbbf44df81f1b62d957b96fabaa39e118b034cbf376cac7093</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIhLLhxTvLHj2MdSClRqBVLLOdr4RzJKncoOh749qVL1tKudmdXoI-QR6AyAqpfdfLueFRRgVgCVhSyvyATKUuaVKvj1ZQdxS-5S-qWUM8FhQjaveLTJY8hWobfx0LXY-y5kGEz2jRH3drhmy9T7_Sj4QcvejgH3XmdbH_5S5w222aYztr0nNw7bZB_Oc0p-3pe7xWe-_vpYLebrXDMm-1yXxvGKK-QglXGuaRznxklw0IjCqLJqlHDYIDJlAWRDGdeNY5XQqCuq2JTA-FfHLqVoXX2IQ8F4rIHWJx71iUd94lGfeQyZ5zFzwKSxdRGD9ukSLDiXXIpi8D2NPm-tvchlRUEIyv4BFuBqRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model</title><source>IEEE Electronic Library (IEL)</source><creator>Nielsen, J. K. ; Christensen, M. G. ; Cemgil, A. T. ; Godsill, S. J. ; Jensen, S. J.</creator><creatorcontrib>Nielsen, J. K. ; Christensen, M. G. ; Cemgil, A. T. ; Godsill, S. J. ; Jensen, S. J.</creatorcontrib><description>In this paper, we propose a method for restoring the missing or corrupted observations of nonstationary sinusoidal signals which are often encountered in music and speech applications. To model nonstationary signals, we use a time-varying sinusoidal model which is obtained by extending the static sinusoidal model into a dynamic sinusoidal model. In this model, the in-phase and quadrature components of the sinusoids are modeled as first-order Gauss-Markov processes. The inference scheme for the model parameters and missing observations is formulated in a Bayesian framework and is based on a Markov chain Monte Carlo method known as Gibbs sampler. We focus on the parameter estimation in the dynamic sinusoidal model since this constitutes the core of model-based interpolation. In the simulations, we first investigate the applicability of the model and then demonstrate the inference scheme by applying it to the restoration of lost audio packets on a packet-based network. The results show that the proposed method is a reasonable inference scheme for estimating unknown signal parameters and interpolating gaps consisting of missing/corrupted signal segments.</description><identifier>ISSN: 1558-7916</identifier><identifier>EISSN: 1558-7924</identifier><identifier>DOI: 10.1109/TASL.2011.2108285</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Bayesian methods ; Bayesian signal processing ; Biological system modeling ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Hidden Markov models ; Information, signal and communications theory ; Interpolation ; Markov processes ; Mathematical model ; Noise ; Signal and communications theory ; Signal, noise ; sinusoidal signal model ; state space modeling ; Telecommunications and information theory</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2011-09, Vol.19 (7), p.1986-1998</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-c5df4749a4189dffbbf44df81f1b62d957b96fabaa39e118b034cbf376cac7093</citedby><cites>FETCH-LOGICAL-c338t-c5df4749a4189dffbbf44df81f1b62d957b96fabaa39e118b034cbf376cac7093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5701660$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5701660$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24484862$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nielsen, J. K.</creatorcontrib><creatorcontrib>Christensen, M. G.</creatorcontrib><creatorcontrib>Cemgil, A. T.</creatorcontrib><creatorcontrib>Godsill, S. J.</creatorcontrib><creatorcontrib>Jensen, S. J.</creatorcontrib><title>Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>In this paper, we propose a method for restoring the missing or corrupted observations of nonstationary sinusoidal signals which are often encountered in music and speech applications. To model nonstationary signals, we use a time-varying sinusoidal model which is obtained by extending the static sinusoidal model into a dynamic sinusoidal model. In this model, the in-phase and quadrature components of the sinusoids are modeled as first-order Gauss-Markov processes. The inference scheme for the model parameters and missing observations is formulated in a Bayesian framework and is based on a Markov chain Monte Carlo method known as Gibbs sampler. We focus on the parameter estimation in the dynamic sinusoidal model since this constitutes the core of model-based interpolation. In the simulations, we first investigate the applicability of the model and then demonstrate the inference scheme by applying it to the restoration of lost audio packets on a packet-based network. The results show that the proposed method is a reasonable inference scheme for estimating unknown signal parameters and interpolating gaps consisting of missing/corrupted signal segments.</description><subject>Applied sciences</subject><subject>Bayesian methods</subject><subject>Bayesian signal processing</subject><subject>Biological system modeling</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Hidden Markov models</subject><subject>Information, signal and communications theory</subject><subject>Interpolation</subject><subject>Markov processes</subject><subject>Mathematical model</subject><subject>Noise</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>sinusoidal signal model</subject><subject>state space modeling</subject><subject>Telecommunications and information theory</subject><issn>1558-7916</issn><issn>1558-7924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAIhLLhxTvLHj2MdSClRqBVLLOdr4RzJKncoOh749qVL1tKudmdXoI-QR6AyAqpfdfLueFRRgVgCVhSyvyATKUuaVKvj1ZQdxS-5S-qWUM8FhQjaveLTJY8hWobfx0LXY-y5kGEz2jRH3drhmy9T7_Sj4QcvejgH3XmdbH_5S5w222aYztr0nNw7bZB_Oc0p-3pe7xWe-_vpYLebrXDMm-1yXxvGKK-QglXGuaRznxklw0IjCqLJqlHDYIDJlAWRDGdeNY5XQqCuq2JTA-FfHLqVoXX2IQ8F4rIHWJx71iUd94lGfeQyZ5zFzwKSxdRGD9ukSLDiXXIpi8D2NPm-tvchlRUEIyv4BFuBqRQ</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Nielsen, J. K.</creator><creator>Christensen, M. G.</creator><creator>Cemgil, A. T.</creator><creator>Godsill, S. J.</creator><creator>Jensen, S. J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110901</creationdate><title>Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model</title><author>Nielsen, J. K. ; Christensen, M. G. ; Cemgil, A. T. ; Godsill, S. J. ; Jensen, S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-c5df4749a4189dffbbf44df81f1b62d957b96fabaa39e118b034cbf376cac7093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Bayesian methods</topic><topic>Bayesian signal processing</topic><topic>Biological system modeling</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Hidden Markov models</topic><topic>Information, signal and communications theory</topic><topic>Interpolation</topic><topic>Markov processes</topic><topic>Mathematical model</topic><topic>Noise</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>sinusoidal signal model</topic><topic>state space modeling</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nielsen, J. K.</creatorcontrib><creatorcontrib>Christensen, M. G.</creatorcontrib><creatorcontrib>Cemgil, A. T.</creatorcontrib><creatorcontrib>Godsill, S. J.</creatorcontrib><creatorcontrib>Jensen, S. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nielsen, J. K.</au><au>Christensen, M. G.</au><au>Cemgil, A. T.</au><au>Godsill, S. J.</au><au>Jensen, S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>19</volume><issue>7</issue><spage>1986</spage><epage>1998</epage><pages>1986-1998</pages><issn>1558-7916</issn><eissn>1558-7924</eissn><coden>ITASD8</coden><abstract>In this paper, we propose a method for restoring the missing or corrupted observations of nonstationary sinusoidal signals which are often encountered in music and speech applications. To model nonstationary signals, we use a time-varying sinusoidal model which is obtained by extending the static sinusoidal model into a dynamic sinusoidal model. In this model, the in-phase and quadrature components of the sinusoids are modeled as first-order Gauss-Markov processes. The inference scheme for the model parameters and missing observations is formulated in a Bayesian framework and is based on a Markov chain Monte Carlo method known as Gibbs sampler. We focus on the parameter estimation in the dynamic sinusoidal model since this constitutes the core of model-based interpolation. In the simulations, we first investigate the applicability of the model and then demonstrate the inference scheme by applying it to the restoration of lost audio packets on a packet-based network. The results show that the proposed method is a reasonable inference scheme for estimating unknown signal parameters and interpolating gaps consisting of missing/corrupted signal segments.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASL.2011.2108285</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1558-7916
ispartof IEEE transactions on audio, speech, and language processing, 2011-09, Vol.19 (7), p.1986-1998
issn 1558-7916
1558-7924
language eng
recordid cdi_ieee_primary_5701660
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bayesian methods
Bayesian signal processing
Biological system modeling
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Hidden Markov models
Information, signal and communications theory
Interpolation
Markov processes
Mathematical model
Noise
Signal and communications theory
Signal, noise
sinusoidal signal model
state space modeling
Telecommunications and information theory
title Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Interpolation%20and%20Parameter%20Estimation%20in%20a%20Dynamic%20Sinusoidal%20Model&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Nielsen,%20J.%20K.&rft.date=2011-09-01&rft.volume=19&rft.issue=7&rft.spage=1986&rft.epage=1998&rft.pages=1986-1998&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2011.2108285&rft_dat=%3Cpascalfrancis_RIE%3E24484862%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5701660&rfr_iscdi=true