Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model
In this paper, we propose a method for restoring the missing or corrupted observations of nonstationary sinusoidal signals which are often encountered in music and speech applications. To model nonstationary signals, we use a time-varying sinusoidal model which is obtained by extending the static si...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2011-09, Vol.19 (7), p.1986-1998 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1998 |
---|---|
container_issue | 7 |
container_start_page | 1986 |
container_title | IEEE transactions on audio, speech, and language processing |
container_volume | 19 |
creator | Nielsen, J. K. Christensen, M. G. Cemgil, A. T. Godsill, S. J. Jensen, S. J. |
description | In this paper, we propose a method for restoring the missing or corrupted observations of nonstationary sinusoidal signals which are often encountered in music and speech applications. To model nonstationary signals, we use a time-varying sinusoidal model which is obtained by extending the static sinusoidal model into a dynamic sinusoidal model. In this model, the in-phase and quadrature components of the sinusoids are modeled as first-order Gauss-Markov processes. The inference scheme for the model parameters and missing observations is formulated in a Bayesian framework and is based on a Markov chain Monte Carlo method known as Gibbs sampler. We focus on the parameter estimation in the dynamic sinusoidal model since this constitutes the core of model-based interpolation. In the simulations, we first investigate the applicability of the model and then demonstrate the inference scheme by applying it to the restoration of lost audio packets on a packet-based network. The results show that the proposed method is a reasonable inference scheme for estimating unknown signal parameters and interpolating gaps consisting of missing/corrupted signal segments. |
doi_str_mv | 10.1109/TASL.2011.2108285 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_5701660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5701660</ieee_id><sourcerecordid>24484862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-c5df4749a4189dffbbf44df81f1b62d957b96fabaa39e118b034cbf376cac7093</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIhLLhxTvLHj2MdSClRqBVLLOdr4RzJKncoOh749qVL1tKudmdXoI-QR6AyAqpfdfLueFRRgVgCVhSyvyATKUuaVKvj1ZQdxS-5S-qWUM8FhQjaveLTJY8hWobfx0LXY-y5kGEz2jRH3drhmy9T7_Sj4QcvejgH3XmdbH_5S5w222aYztr0nNw7bZB_Oc0p-3pe7xWe-_vpYLebrXDMm-1yXxvGKK-QglXGuaRznxklw0IjCqLJqlHDYIDJlAWRDGdeNY5XQqCuq2JTA-FfHLqVoXX2IQ8F4rIHWJx71iUd94lGfeQyZ5zFzwKSxdRGD9ukSLDiXXIpi8D2NPm-tvchlRUEIyv4BFuBqRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model</title><source>IEEE Electronic Library (IEL)</source><creator>Nielsen, J. K. ; Christensen, M. G. ; Cemgil, A. T. ; Godsill, S. J. ; Jensen, S. J.</creator><creatorcontrib>Nielsen, J. K. ; Christensen, M. G. ; Cemgil, A. T. ; Godsill, S. J. ; Jensen, S. J.</creatorcontrib><description>In this paper, we propose a method for restoring the missing or corrupted observations of nonstationary sinusoidal signals which are often encountered in music and speech applications. To model nonstationary signals, we use a time-varying sinusoidal model which is obtained by extending the static sinusoidal model into a dynamic sinusoidal model. In this model, the in-phase and quadrature components of the sinusoids are modeled as first-order Gauss-Markov processes. The inference scheme for the model parameters and missing observations is formulated in a Bayesian framework and is based on a Markov chain Monte Carlo method known as Gibbs sampler. We focus on the parameter estimation in the dynamic sinusoidal model since this constitutes the core of model-based interpolation. In the simulations, we first investigate the applicability of the model and then demonstrate the inference scheme by applying it to the restoration of lost audio packets on a packet-based network. The results show that the proposed method is a reasonable inference scheme for estimating unknown signal parameters and interpolating gaps consisting of missing/corrupted signal segments.</description><identifier>ISSN: 1558-7916</identifier><identifier>EISSN: 1558-7924</identifier><identifier>DOI: 10.1109/TASL.2011.2108285</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Bayesian methods ; Bayesian signal processing ; Biological system modeling ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Hidden Markov models ; Information, signal and communications theory ; Interpolation ; Markov processes ; Mathematical model ; Noise ; Signal and communications theory ; Signal, noise ; sinusoidal signal model ; state space modeling ; Telecommunications and information theory</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2011-09, Vol.19 (7), p.1986-1998</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-c5df4749a4189dffbbf44df81f1b62d957b96fabaa39e118b034cbf376cac7093</citedby><cites>FETCH-LOGICAL-c338t-c5df4749a4189dffbbf44df81f1b62d957b96fabaa39e118b034cbf376cac7093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5701660$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5701660$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24484862$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nielsen, J. K.</creatorcontrib><creatorcontrib>Christensen, M. G.</creatorcontrib><creatorcontrib>Cemgil, A. T.</creatorcontrib><creatorcontrib>Godsill, S. J.</creatorcontrib><creatorcontrib>Jensen, S. J.</creatorcontrib><title>Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>In this paper, we propose a method for restoring the missing or corrupted observations of nonstationary sinusoidal signals which are often encountered in music and speech applications. To model nonstationary signals, we use a time-varying sinusoidal model which is obtained by extending the static sinusoidal model into a dynamic sinusoidal model. In this model, the in-phase and quadrature components of the sinusoids are modeled as first-order Gauss-Markov processes. The inference scheme for the model parameters and missing observations is formulated in a Bayesian framework and is based on a Markov chain Monte Carlo method known as Gibbs sampler. We focus on the parameter estimation in the dynamic sinusoidal model since this constitutes the core of model-based interpolation. In the simulations, we first investigate the applicability of the model and then demonstrate the inference scheme by applying it to the restoration of lost audio packets on a packet-based network. The results show that the proposed method is a reasonable inference scheme for estimating unknown signal parameters and interpolating gaps consisting of missing/corrupted signal segments.</description><subject>Applied sciences</subject><subject>Bayesian methods</subject><subject>Bayesian signal processing</subject><subject>Biological system modeling</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Hidden Markov models</subject><subject>Information, signal and communications theory</subject><subject>Interpolation</subject><subject>Markov processes</subject><subject>Mathematical model</subject><subject>Noise</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>sinusoidal signal model</subject><subject>state space modeling</subject><subject>Telecommunications and information theory</subject><issn>1558-7916</issn><issn>1558-7924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAIhLLhxTvLHj2MdSClRqBVLLOdr4RzJKncoOh749qVL1tKudmdXoI-QR6AyAqpfdfLueFRRgVgCVhSyvyATKUuaVKvj1ZQdxS-5S-qWUM8FhQjaveLTJY8hWobfx0LXY-y5kGEz2jRH3drhmy9T7_Sj4QcvejgH3XmdbH_5S5w222aYztr0nNw7bZB_Oc0p-3pe7xWe-_vpYLebrXDMm-1yXxvGKK-QglXGuaRznxklw0IjCqLJqlHDYIDJlAWRDGdeNY5XQqCuq2JTA-FfHLqVoXX2IQ8F4rIHWJx71iUd94lGfeQyZ5zFzwKSxdRGD9ukSLDiXXIpi8D2NPm-tvchlRUEIyv4BFuBqRQ</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Nielsen, J. K.</creator><creator>Christensen, M. G.</creator><creator>Cemgil, A. T.</creator><creator>Godsill, S. J.</creator><creator>Jensen, S. J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110901</creationdate><title>Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model</title><author>Nielsen, J. K. ; Christensen, M. G. ; Cemgil, A. T. ; Godsill, S. J. ; Jensen, S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-c5df4749a4189dffbbf44df81f1b62d957b96fabaa39e118b034cbf376cac7093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Bayesian methods</topic><topic>Bayesian signal processing</topic><topic>Biological system modeling</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Hidden Markov models</topic><topic>Information, signal and communications theory</topic><topic>Interpolation</topic><topic>Markov processes</topic><topic>Mathematical model</topic><topic>Noise</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>sinusoidal signal model</topic><topic>state space modeling</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nielsen, J. K.</creatorcontrib><creatorcontrib>Christensen, M. G.</creatorcontrib><creatorcontrib>Cemgil, A. T.</creatorcontrib><creatorcontrib>Godsill, S. J.</creatorcontrib><creatorcontrib>Jensen, S. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nielsen, J. K.</au><au>Christensen, M. G.</au><au>Cemgil, A. T.</au><au>Godsill, S. J.</au><au>Jensen, S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>19</volume><issue>7</issue><spage>1986</spage><epage>1998</epage><pages>1986-1998</pages><issn>1558-7916</issn><eissn>1558-7924</eissn><coden>ITASD8</coden><abstract>In this paper, we propose a method for restoring the missing or corrupted observations of nonstationary sinusoidal signals which are often encountered in music and speech applications. To model nonstationary signals, we use a time-varying sinusoidal model which is obtained by extending the static sinusoidal model into a dynamic sinusoidal model. In this model, the in-phase and quadrature components of the sinusoids are modeled as first-order Gauss-Markov processes. The inference scheme for the model parameters and missing observations is formulated in a Bayesian framework and is based on a Markov chain Monte Carlo method known as Gibbs sampler. We focus on the parameter estimation in the dynamic sinusoidal model since this constitutes the core of model-based interpolation. In the simulations, we first investigate the applicability of the model and then demonstrate the inference scheme by applying it to the restoration of lost audio packets on a packet-based network. The results show that the proposed method is a reasonable inference scheme for estimating unknown signal parameters and interpolating gaps consisting of missing/corrupted signal segments.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASL.2011.2108285</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1558-7916 |
ispartof | IEEE transactions on audio, speech, and language processing, 2011-09, Vol.19 (7), p.1986-1998 |
issn | 1558-7916 1558-7924 |
language | eng |
recordid | cdi_ieee_primary_5701660 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Bayesian methods Bayesian signal processing Biological system modeling Detection, estimation, filtering, equalization, prediction Exact sciences and technology Hidden Markov models Information, signal and communications theory Interpolation Markov processes Mathematical model Noise Signal and communications theory Signal, noise sinusoidal signal model state space modeling Telecommunications and information theory |
title | Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Interpolation%20and%20Parameter%20Estimation%20in%20a%20Dynamic%20Sinusoidal%20Model&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Nielsen,%20J.%20K.&rft.date=2011-09-01&rft.volume=19&rft.issue=7&rft.spage=1986&rft.epage=1998&rft.pages=1986-1998&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2011.2108285&rft_dat=%3Cpascalfrancis_RIE%3E24484862%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5701660&rfr_iscdi=true |