Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model
In this paper, we propose a method for restoring the missing or corrupted observations of nonstationary sinusoidal signals which are often encountered in music and speech applications. To model nonstationary signals, we use a time-varying sinusoidal model which is obtained by extending the static si...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2011-09, Vol.19 (7), p.1986-1998 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a method for restoring the missing or corrupted observations of nonstationary sinusoidal signals which are often encountered in music and speech applications. To model nonstationary signals, we use a time-varying sinusoidal model which is obtained by extending the static sinusoidal model into a dynamic sinusoidal model. In this model, the in-phase and quadrature components of the sinusoids are modeled as first-order Gauss-Markov processes. The inference scheme for the model parameters and missing observations is formulated in a Bayesian framework and is based on a Markov chain Monte Carlo method known as Gibbs sampler. We focus on the parameter estimation in the dynamic sinusoidal model since this constitutes the core of model-based interpolation. In the simulations, we first investigate the applicability of the model and then demonstrate the inference scheme by applying it to the restoration of lost audio packets on a packet-based network. The results show that the proposed method is a reasonable inference scheme for estimating unknown signal parameters and interpolating gaps consisting of missing/corrupted signal segments. |
---|---|
ISSN: | 1558-7916 1558-7924 |
DOI: | 10.1109/TASL.2011.2108285 |