Dynamic operation of passive mode-locked fiber laser with carbon nanotubes-based saturable absorber
Measurement and modeling of single-walled carbon nanotubes (SWCNTs) based saturable absorber (SA) on stabilizing and shortening mode-locked fiber lasers are presented. The concentration and thickness effect of SWCNTs SA on stabilizing and shortening passive mode-locked pulse is investigated experime...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Measurement and modeling of single-walled carbon nanotubes (SWCNTs) based saturable absorber (SA) on stabilizing and shortening mode-locked fiber lasers are presented. The concentration and thickness effect of SWCNTs SA on stabilizing and shortening passive mode-locked pulse is investigated experimentally. Haus master equation is applied to simulate the pulse characteristics to understand the dynamic operation of passive mode-locked fiber lasers. The simulation results are in good agreement with the experimental results for the spectral bandwidth and pulse width depended on the thickness and concentration of SWCNTs SA. A limit of spectral bandwidth of 6.04 nm and pulse width of 440 fs in passive mode locking lasers is obtained. A comprehensively study of pulse characteristics of passive mode-locked fiber lasers provides a guide to fabricate an effective SWCNTs SA for use in many carbon nanotubes based photonics devices. |
---|---|
ISSN: | 1092-8081 2766-1733 |
DOI: | 10.1109/PHOTONICS.2010.5699065 |