Real time control of electrical machine drives: A review

Over the last two decades, commercially available computer has become both increasingly powerful and increasingly affordable. This, in turn, has led to the emergence of highly sophisticated simulation software applications that not only enable high-fidelity simulation of dynamic systems and related...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Menghal, P M, Laxmi, A J
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Over the last two decades, commercially available computer has become both increasingly powerful and increasingly affordable. This, in turn, has led to the emergence of highly sophisticated simulation software applications that not only enable high-fidelity simulation of dynamic systems and related controls, but also automatic code generation for implementation in industrial controllers. Today, electric drives, power electronic systems and their controls are getting more and more complex, and their use is widely increasing in all sectors: power systems, traction, hybrid vehicles, industrial and home electronics, automotive, naval and aerospace systems, etc. Advances in Microprocessors, Microcomputers, Microcontrollers such as DSP, FPGA, dSPACE etc. and Power Semiconductor devices have made tremendous impact on electric motor drives. Due to advancement of the software tools like MATLAB/SIMULINK with its Real Time Workshop (RTW) and Real Time Windows Target (RTWT), real time simulators are used extensively in many engineering fields, such as industry, education and research institutions. As consequences, inclusion of the real time simulation applications in modern engineering provides great help for the researcher and academicians. A case is made to present overview of the Real Time Simulations of Electrical Machine Drives possibility of including these techniques in modern engineering and practices. This paper will also discuss various real time simulation techniques such as Real Time Laboratory (RT Lab). Rapid Control Prototyping (RCP) and Hardware in the Loop (HIL) can be used in a modern engineering.
DOI:10.1109/ICPCES.2010.5698697