Metabolic Flux Analysis in the Cloud
The MapReduce pattern popularized by Google has successfully been utilized in several scientific applications. In this paper, it is investigated whether a MapReduce approach utilizing on-demand resources from a Cloud is beneficial to perform simulation tasks in the area of Systems Biology and whethe...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The MapReduce pattern popularized by Google has successfully been utilized in several scientific applications. In this paper, it is investigated whether a MapReduce approach utilizing on-demand resources from a Cloud is beneficial to perform simulation tasks in the area of Systems Biology and whether it can be seamlessly integrated into a service-oriented scientific workflow framework. In particular, an Amazon Elastic Map Reduce Cloud implementation of the 13C-MFA (Metabolix Flux Analysis) Monte Carlo bootstrap approach aimed at the integration into an existing BPEL-based scientific workflow system is presented. A comparison of a 64 node MapReduce cluster with a single node computation approach reveals a total performance gain up to a factor of 14, with a total cost for on-demand resources of 11. The most critical factor in terms of performance is I/O, i.e. our application suffers from the fact that I/O operations on many small files are expensive using Amazon S3 and the Hadoop DFS. |
---|---|
DOI: | 10.1109/eScience.2010.20 |