Learning the skill of archery by a humanoid robot iCub

We present an integrated approach allowing the humanoid robot iCub to learn the skill of archery. After being instructed how to hold the bow and release the arrow, the robot learns by itself to shoot the arrow in such a way that it hits the center of the target. Two learning algorithms are proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kormushev, P, Calinon, S, Saegusa, R, Metta, G
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an integrated approach allowing the humanoid robot iCub to learn the skill of archery. After being instructed how to hold the bow and release the arrow, the robot learns by itself to shoot the arrow in such a way that it hits the center of the target. Two learning algorithms are proposed and compared to learn the bi-manual skill: one with Expectation-Maximization based Reinforcement Learning, and one with chained vector regression called the ARCHER algorithm. Both algorithms are used to modulate and coordinate the motion of the two hands, while an inverse kinematics controller is used for the motion of the arms. The image processing part recognizes where the arrow hits the target and is based on Gaussian Mixture Models for color-based detection of the target and the arrow's tip. The approach is evaluated on a 53-DOF humanoid robot iCub.
ISSN:2164-0572
DOI:10.1109/ICHR.2010.5686841