Nonsmooth Optimization for Beamforming in Cognitive Multicast Transmission

It is well-known that the optimal beamforming problems for cognitive multicast transmission are indefinite quadratic (nonconvex) optimization programs. The conventional approach is to reformulate them as convex semi-definite programs (SDPs) with additional rank-one (nonconvex and discontinuous) cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Phan, A H, Tuan, H D, Kha, H H, Ngo, D T
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well-known that the optimal beamforming problems for cognitive multicast transmission are indefinite quadratic (nonconvex) optimization programs. The conventional approach is to reformulate them as convex semi-definite programs (SDPs) with additional rank-one (nonconvex and discontinuous) constraints. The rank-one constraints are then dropped for relaxed solutions, and randomization techniques are employed for solution search. In many practical cases, this approach fails to deliver satisfactory solutions, i.e., its found solutions are very far from the optimal ones. In contrast, in this paper we cast the optimal beamforming problems as SDPs with the additional reverse convex (but continuous) constraints. An efficient algorithm of nonsmooth optimization is then proposed for seeking the optimal solution. Our simulation results show that the proposed approach yields almost global optimal solutions with much less computational load than the mentioned conventional one.
ISSN:1930-529X
2576-764X
DOI:10.1109/GLOCOM.2010.5683915