On deciding between conservative and optimistic approaches on massively parallel platforms

Over 5000 publications on parallel discrete event simulation (PDES) have appeared in the literature to date. Nevertheless, few articles have focused on empirical studies of PDES performance on large supercomputer-based systems. This gap is bridged here, by undertaking a parameterized performance stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Carothers, C D, Perumalla, K S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Over 5000 publications on parallel discrete event simulation (PDES) have appeared in the literature to date. Nevertheless, few articles have focused on empirical studies of PDES performance on large supercomputer-based systems. This gap is bridged here, by undertaking a parameterized performance study on thousands of processor cores of a Blue Gene supercomputing system. In contrast to theoretical insights from analytical studies, our study is based on actual implementation in software, incurring the actual messaging and computational overheads for both conservative and optimistic synchronization approaches of PDES. Complex and counter-intuitive effects are uncovered and analyzed, with different event timestamp distributions and available levels of concurrency in the synthetic benchmark models. The results are intended to provide guidance to the PDES community in terms of how the synchronization protocols behave at high processor core counts using a state-of-the-art supercomputing systems.
ISSN:0891-7736
1558-4305
DOI:10.1109/WSC.2010.5679119