Coordinated Charging of Plug-In Hybrid Electric Vehicles to Minimize Distribution System Losses
As the number of plug-in hybrid vehicles (PHEVs) increases, so might the impacts on the power system performance, such as overloading, reduced efficiency, power quality, and voltage regulation particularly at the distribution level. Coordinated charging of PHEVs is a possible solution to these probl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2011-03, Vol.2 (1), p.198-205 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As the number of plug-in hybrid vehicles (PHEVs) increases, so might the impacts on the power system performance, such as overloading, reduced efficiency, power quality, and voltage regulation particularly at the distribution level. Coordinated charging of PHEVs is a possible solution to these problems. In this work, the relationship between feeder losses, load factor, and load variance is explored in the context of coordinated PHEV charging. From these relationships, three optimal charging algorithms are developed which minimize the impacts of PHEV charging on the connected distribution system. The application of the algorithms to two test systems verifies these relationships approximately hold independent of system topology. They also show the additional benefits of reduced computation time and problem convexity when using load factor or load variance as the objective function rather than system losses. This is important for real-time dispatching of PHEVs. |
---|---|
ISSN: | 1949-3053 1949-3061 |
DOI: | 10.1109/TSG.2010.2090913 |