Work-function variation induced fluctuation in bias-temperature-instability characteristics of emerging metal-gate devices and implications for digital design

This paper, for the first time, shows that the work-function variation (WFV) in emerging metal-gate devices results in significant fluctuation in the gate-oxide electric field, and hence fluctuation in bias temperature instability (BTI) characteristics (both NBTI and PBTI). We modify the existing NB...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rasouli, S H, Endo, K, Banerjee, K
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper, for the first time, shows that the work-function variation (WFV) in emerging metal-gate devices results in significant fluctuation in the gate-oxide electric field, and hence fluctuation in bias temperature instability (BTI) characteristics (both NBTI and PBTI). We modify the existing NBTI and PBTI models in order to accurately characterize the BTI characteristics of the metal-gate devices. It is shown that the impact of the oxide electric field on threshold voltage degradation is substantially underestimated if WFV is neglected. Moreover, in FinFET devices, work-function variation induced electric field (which is independent of the gate-source bias) not only results in fluctuation in the BTI characteristics, but also causes variation in the recovery process. It is highlighted for the first time that WFV induced BTI fluctuation can have significant impact on the performance and reliability characteristics of digital circuits such as SRAM cells and Domino logic gates.
ISSN:1092-3152
1558-2434
DOI:10.1109/ICCAD.2010.5654260