A scalable quantitative measure of IR-drop effects for scan pattern generation
Analysis of power grid IR-drop during scan test application has drawn growing attention because excessive IR-drop may cause a functionally correct device to fail at-speed testing. The analysis is challenging since the power grid IR-drop profile depends on not only the switching cells locations but a...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Analysis of power grid IR-drop during scan test application has drawn growing attention because excessive IR-drop may cause a functionally correct device to fail at-speed testing. The analysis is challenging since the power grid IR-drop profile depends on not only the switching cells locations but also the power grid structure. This paper presents a scalable implementation methodology for quantifying the IR-drop effects of a set of switching cells. An example of its application to guide power-safe scan pattern generation is illustrated. The scalability and effectiveness of the proposed quantitative measure is evaluated with a 130 nm industrial design with 800 K cells. |
---|---|
ISSN: | 1092-3152 1558-2434 |
DOI: | 10.1109/ICCAD.2010.5654130 |