Semi-automatic motion based segmentation using long term motion trajectories

Semi-automated object segmentation is an important step in the cinema post-production workflow. We propose a dense motion based segmentation process that employs sparse feature based trajectories estimated across a long sequence of frames, articulated with a Bayesian framework. The algorithm first c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Baugh, G, Kokaram, A
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semi-automated object segmentation is an important step in the cinema post-production workflow. We propose a dense motion based segmentation process that employs sparse feature based trajectories estimated across a long sequence of frames, articulated with a Bayesian framework. The algorithm first classifies the sparse trajectories into sparsely defined objects. Then the sparse object trajectories together with motion model side information are used to generate a dense object segmentation of each video frame. Unlike previous work, we do not use the sparse trajectories only to propose motion models, but instead use their position and motion throughout the sequence as part of the classification of pixels in the second step. Furthermore, we introduce novel colour and motion priors that employ the sparse trajectories to make explicit the spatiotemporal smoothness constraints important for long term motion segmentation.
ISSN:1522-4880
2381-8549
DOI:10.1109/ICIP.2010.5653946