Gradient projection for linearly constrained convex optimization in sparse signal recovery
The ℓ 2 -ℓ 1 compressed sensing minimization problem can be solved efficiently by gradient projection. In imaging applications, the signal of interest corresponds to nonnegative pixel intensities; thus, with additional nonnegativity constraints on the reconstruction, the resulting constrained minimi...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ℓ 2 -ℓ 1 compressed sensing minimization problem can be solved efficiently by gradient projection. In imaging applications, the signal of interest corresponds to nonnegative pixel intensities; thus, with additional nonnegativity constraints on the reconstruction, the resulting constrained minimization problem becomes more challenging to solve. In this paper, we propose a gradient projection approach for sparse signal recovery where the reconstruction is subject to nonnegativity constraints. Numerical results are presented to demonstrate the effectiveness of this approach. |
---|---|
ISSN: | 1522-4880 2381-8549 |
DOI: | 10.1109/ICIP.2010.5652815 |