Gradient projection for linearly constrained convex optimization in sparse signal recovery

The ℓ 2 -ℓ 1 compressed sensing minimization problem can be solved efficiently by gradient projection. In imaging applications, the signal of interest corresponds to nonnegative pixel intensities; thus, with additional nonnegativity constraints on the reconstruction, the resulting constrained minimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Harmany, Z, Thompson, D, Willett, R, Marcia, R F
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ℓ 2 -ℓ 1 compressed sensing minimization problem can be solved efficiently by gradient projection. In imaging applications, the signal of interest corresponds to nonnegative pixel intensities; thus, with additional nonnegativity constraints on the reconstruction, the resulting constrained minimization problem becomes more challenging to solve. In this paper, we propose a gradient projection approach for sparse signal recovery where the reconstruction is subject to nonnegativity constraints. Numerical results are presented to demonstrate the effectiveness of this approach.
ISSN:1522-4880
2381-8549
DOI:10.1109/ICIP.2010.5652815