Video retargeting with nonlinear spatial-temporal saliency fusion

Video retargeting (resolution adaptation) is a challenging problem for its highly subjective nature. In this paper, a nonlinear saliency fusing approach, that considers human perceptual characteristics for automatic video retargeting, is being proposed. First, we incorporate features from phase spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Taoran Lu, Zheng Yuan, Yu Huang, Dapeng Wu, Heather Yu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Video retargeting (resolution adaptation) is a challenging problem for its highly subjective nature. In this paper, a nonlinear saliency fusing approach, that considers human perceptual characteristics for automatic video retargeting, is being proposed. First, we incorporate features from phase spectrum of quaternion Fourier Transform (PQFT) in spatial domain and global motion residual based on matched feature points by the Kanade-Lucas-Tomasi (KLT) tracker in temporal domain. In addition, under a cropping-and-scaling retargeting framework, we propose content-aware information loss metrics and a hierarchical search to find optimal cropping window parameters. Results show the success of our approach on detecting saliency regions and retargeting on images and videos.
ISSN:1522-4880
2381-8549
DOI:10.1109/ICIP.2010.5651644