Color exploitation in hog-based traffic sign detection
We study traffic sign detection on a challenging large-scale real-world dataset of panoramic images. The core processing is based on the Histogram of Oriented Gradients (HOG) algorithm which is extended by incorporating color information in the feature vector. The choice of the color space has a lar...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study traffic sign detection on a challenging large-scale real-world dataset of panoramic images. The core processing is based on the Histogram of Oriented Gradients (HOG) algorithm which is extended by incorporating color information in the feature vector. The choice of the color space has a large influence on the performance, where we have found that the CIELab and YCbCr color spaces give the best results. The use of color significantly improves the detection performance. We compare the performance of a specific and HOG algorithm, and show that HOG outperforms the specific algorithm by up to tens of percents in most cases. In addition, we propose a new iterative SVM training paradigm to deal with the large variation in background appearance. This reduces memory consumption and increases utilization of background information. |
---|---|
ISSN: | 1522-4880 2381-8549 |
DOI: | 10.1109/ICIP.2010.5651637 |