Efficient nearest-neighbor computation for GPU-based motion planning

We present a novel k-nearest neighbor search algorithm (KNNS) for proximity computation in motion planning algorithm that exploits the computational capabilities of many-core GPUs. Our approach uses locality sensitive hashing and cuckoo hashing to construct an efficient KNNS algorithm that has linea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jia Pan, Lauterbach, C, Manocha, D
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel k-nearest neighbor search algorithm (KNNS) for proximity computation in motion planning algorithm that exploits the computational capabilities of many-core GPUs. Our approach uses locality sensitive hashing and cuckoo hashing to construct an efficient KNNS algorithm that has linear space and time complexity and exploits the multiple cores and data parallelism effectively. In practice, we see magnitude improvement in speed and scalability over prior GPU-based KNNS algorithm. On some benchmarks, our KNNS algorithm improves the performance of overall planner by 20-40 times for CPU-based planner and up to 2 times for GPU-based planner.
ISSN:2153-0858
2153-0866
DOI:10.1109/IROS.2010.5651449