Carrier relevance study for indoor localization using GSM

A study is made of subsets of relevant GSM carriers for an indoor localization problem. A database was created containing power measurement scans of all available GSM carriers in 5 of 8 rooms of a second storey laboratory in central Paris, France, and a statistical learning algorithm developed to di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ahriz, I, Oussar, Y, Denby, B, Dreyfus, Gérard
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue
container_start_page 168
container_title
container_volume
creator Ahriz, I
Oussar, Y
Denby, B
Dreyfus, Gérard
description A study is made of subsets of relevant GSM carriers for an indoor localization problem. A database was created containing power measurement scans of all available GSM carriers in 5 of 8 rooms of a second storey laboratory in central Paris, France, and a statistical learning algorithm developed to discriminate between rooms based on these carrier strengths. To optimize the system, carrier relevance was ranked using either Orthogonal Forward Regression or Support Vector Machine - Recursive Feature Elimination procedures, and a subset of relevant variables obtained with cross-validation. Results show that the 60 most relevant carriers are sufficient to correctly localize 97% of scans in an independent test set.
doi_str_mv 10.1109/WPNC.2010.5650492
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5650492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5650492</ieee_id><sourcerecordid>5650492</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bd7dc177187197102edb2b850f0d6f7f4ad4665074c3517760473deea2cfab293</originalsourceid><addsrcrecordid>eNotj81KxDAUheNCUMd5AHGTF-h4b5ImzVKKjsL4Aw64HNLkRiK1laQjjE9vwVl9HDh8nMPYFcIKEezN--tzuxIwx1rXoKw4YReohFIG60aesWUpnwCARmuJ4pzZ1uWcKPNMPf24wRMv0z4ceBwzT0MYZ_Sjd336dVMaB74vafjg67enS3YaXV9oeeSCbe_vtu1DtXlZP7a3mypZmKoumODRGGwMWoMgKHSia2qIEHQ0Ubmg9LzUKC_ruadBGRmInPDRdcLKBbv-1yYi2n3n9OXyYXc8J_8AV8ZEpQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Carrier relevance study for indoor localization using GSM</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ahriz, I ; Oussar, Y ; Denby, B ; Dreyfus, Gérard</creator><creatorcontrib>Ahriz, I ; Oussar, Y ; Denby, B ; Dreyfus, Gérard</creatorcontrib><description>A study is made of subsets of relevant GSM carriers for an indoor localization problem. A database was created containing power measurement scans of all available GSM carriers in 5 of 8 rooms of a second storey laboratory in central Paris, France, and a statistical learning algorithm developed to discriminate between rooms based on these carrier strengths. To optimize the system, carrier relevance was ranked using either Orthogonal Forward Regression or Support Vector Machine - Recursive Feature Elimination procedures, and a subset of relevant variables obtained with cross-validation. Results show that the 60 most relevant carriers are sufficient to correctly localize 97% of scans in an independent test set.</description><identifier>EISBN: 1424471583</identifier><identifier>EISBN: 9781424471577</identifier><identifier>EISBN: 1424471575</identifier><identifier>EISBN: 9781424471584</identifier><identifier>DOI: 10.1109/WPNC.2010.5650492</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Fingerprint recognition ; GSM ; GSM networks ; Indoor localization ; Laboratories ; Support vector machine classification ; Training ; variable selection</subject><ispartof>2010 7th Workshop on Positioning, Navigation and Communication, 2010, p.168-173</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5650492$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5650492$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahriz, I</creatorcontrib><creatorcontrib>Oussar, Y</creatorcontrib><creatorcontrib>Denby, B</creatorcontrib><creatorcontrib>Dreyfus, Gérard</creatorcontrib><title>Carrier relevance study for indoor localization using GSM</title><title>2010 7th Workshop on Positioning, Navigation and Communication</title><addtitle>WPNC</addtitle><description>A study is made of subsets of relevant GSM carriers for an indoor localization problem. A database was created containing power measurement scans of all available GSM carriers in 5 of 8 rooms of a second storey laboratory in central Paris, France, and a statistical learning algorithm developed to discriminate between rooms based on these carrier strengths. To optimize the system, carrier relevance was ranked using either Orthogonal Forward Regression or Support Vector Machine - Recursive Feature Elimination procedures, and a subset of relevant variables obtained with cross-validation. Results show that the 60 most relevant carriers are sufficient to correctly localize 97% of scans in an independent test set.</description><subject>Classification algorithms</subject><subject>Fingerprint recognition</subject><subject>GSM</subject><subject>GSM networks</subject><subject>Indoor localization</subject><subject>Laboratories</subject><subject>Support vector machine classification</subject><subject>Training</subject><subject>variable selection</subject><isbn>1424471583</isbn><isbn>9781424471577</isbn><isbn>1424471575</isbn><isbn>9781424471584</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAUheNCUMd5AHGTF-h4b5ImzVKKjsL4Aw64HNLkRiK1laQjjE9vwVl9HDh8nMPYFcIKEezN--tzuxIwx1rXoKw4YReohFIG60aesWUpnwCARmuJ4pzZ1uWcKPNMPf24wRMv0z4ceBwzT0MYZ_Sjd336dVMaB74vafjg67enS3YaXV9oeeSCbe_vtu1DtXlZP7a3mypZmKoumODRGGwMWoMgKHSia2qIEHQ0Ubmg9LzUKC_ruadBGRmInPDRdcLKBbv-1yYi2n3n9OXyYXc8J_8AV8ZEpQ</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Ahriz, I</creator><creator>Oussar, Y</creator><creator>Denby, B</creator><creator>Dreyfus, Gérard</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201003</creationdate><title>Carrier relevance study for indoor localization using GSM</title><author>Ahriz, I ; Oussar, Y ; Denby, B ; Dreyfus, Gérard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bd7dc177187197102edb2b850f0d6f7f4ad4665074c3517760473deea2cfab293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Classification algorithms</topic><topic>Fingerprint recognition</topic><topic>GSM</topic><topic>GSM networks</topic><topic>Indoor localization</topic><topic>Laboratories</topic><topic>Support vector machine classification</topic><topic>Training</topic><topic>variable selection</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahriz, I</creatorcontrib><creatorcontrib>Oussar, Y</creatorcontrib><creatorcontrib>Denby, B</creatorcontrib><creatorcontrib>Dreyfus, Gérard</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahriz, I</au><au>Oussar, Y</au><au>Denby, B</au><au>Dreyfus, Gérard</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Carrier relevance study for indoor localization using GSM</atitle><btitle>2010 7th Workshop on Positioning, Navigation and Communication</btitle><stitle>WPNC</stitle><date>2010-03</date><risdate>2010</risdate><spage>168</spage><epage>173</epage><pages>168-173</pages><eisbn>1424471583</eisbn><eisbn>9781424471577</eisbn><eisbn>1424471575</eisbn><eisbn>9781424471584</eisbn><abstract>A study is made of subsets of relevant GSM carriers for an indoor localization problem. A database was created containing power measurement scans of all available GSM carriers in 5 of 8 rooms of a second storey laboratory in central Paris, France, and a statistical learning algorithm developed to discriminate between rooms based on these carrier strengths. To optimize the system, carrier relevance was ranked using either Orthogonal Forward Regression or Support Vector Machine - Recursive Feature Elimination procedures, and a subset of relevant variables obtained with cross-validation. Results show that the 60 most relevant carriers are sufficient to correctly localize 97% of scans in an independent test set.</abstract><pub>IEEE</pub><doi>10.1109/WPNC.2010.5650492</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 1424471583
ispartof 2010 7th Workshop on Positioning, Navigation and Communication, 2010, p.168-173
issn
language eng
recordid cdi_ieee_primary_5650492
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Classification algorithms
Fingerprint recognition
GSM
GSM networks
Indoor localization
Laboratories
Support vector machine classification
Training
variable selection
title Carrier relevance study for indoor localization using GSM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Carrier%20relevance%20study%20for%20indoor%20localization%20using%20GSM&rft.btitle=2010%207th%20Workshop%20on%20Positioning,%20Navigation%20and%20Communication&rft.au=Ahriz,%20I&rft.date=2010-03&rft.spage=168&rft.epage=173&rft.pages=168-173&rft_id=info:doi/10.1109/WPNC.2010.5650492&rft_dat=%3Cieee_6IE%3E5650492%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424471583&rft.eisbn_list=9781424471577&rft.eisbn_list=1424471575&rft.eisbn_list=9781424471584&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5650492&rfr_iscdi=true