Carrier relevance study for indoor localization using GSM
A study is made of subsets of relevant GSM carriers for an indoor localization problem. A database was created containing power measurement scans of all available GSM carriers in 5 of 8 rooms of a second storey laboratory in central Paris, France, and a statistical learning algorithm developed to di...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | |
container_start_page | 168 |
container_title | |
container_volume | |
creator | Ahriz, I Oussar, Y Denby, B Dreyfus, Gérard |
description | A study is made of subsets of relevant GSM carriers for an indoor localization problem. A database was created containing power measurement scans of all available GSM carriers in 5 of 8 rooms of a second storey laboratory in central Paris, France, and a statistical learning algorithm developed to discriminate between rooms based on these carrier strengths. To optimize the system, carrier relevance was ranked using either Orthogonal Forward Regression or Support Vector Machine - Recursive Feature Elimination procedures, and a subset of relevant variables obtained with cross-validation. Results show that the 60 most relevant carriers are sufficient to correctly localize 97% of scans in an independent test set. |
doi_str_mv | 10.1109/WPNC.2010.5650492 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5650492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5650492</ieee_id><sourcerecordid>5650492</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bd7dc177187197102edb2b850f0d6f7f4ad4665074c3517760473deea2cfab293</originalsourceid><addsrcrecordid>eNotj81KxDAUheNCUMd5AHGTF-h4b5ImzVKKjsL4Aw64HNLkRiK1laQjjE9vwVl9HDh8nMPYFcIKEezN--tzuxIwx1rXoKw4YReohFIG60aesWUpnwCARmuJ4pzZ1uWcKPNMPf24wRMv0z4ceBwzT0MYZ_Sjd336dVMaB74vafjg67enS3YaXV9oeeSCbe_vtu1DtXlZP7a3mypZmKoumODRGGwMWoMgKHSia2qIEHQ0Ubmg9LzUKC_ruadBGRmInPDRdcLKBbv-1yYi2n3n9OXyYXc8J_8AV8ZEpQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Carrier relevance study for indoor localization using GSM</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ahriz, I ; Oussar, Y ; Denby, B ; Dreyfus, Gérard</creator><creatorcontrib>Ahriz, I ; Oussar, Y ; Denby, B ; Dreyfus, Gérard</creatorcontrib><description>A study is made of subsets of relevant GSM carriers for an indoor localization problem. A database was created containing power measurement scans of all available GSM carriers in 5 of 8 rooms of a second storey laboratory in central Paris, France, and a statistical learning algorithm developed to discriminate between rooms based on these carrier strengths. To optimize the system, carrier relevance was ranked using either Orthogonal Forward Regression or Support Vector Machine - Recursive Feature Elimination procedures, and a subset of relevant variables obtained with cross-validation. Results show that the 60 most relevant carriers are sufficient to correctly localize 97% of scans in an independent test set.</description><identifier>EISBN: 1424471583</identifier><identifier>EISBN: 9781424471577</identifier><identifier>EISBN: 1424471575</identifier><identifier>EISBN: 9781424471584</identifier><identifier>DOI: 10.1109/WPNC.2010.5650492</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Fingerprint recognition ; GSM ; GSM networks ; Indoor localization ; Laboratories ; Support vector machine classification ; Training ; variable selection</subject><ispartof>2010 7th Workshop on Positioning, Navigation and Communication, 2010, p.168-173</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5650492$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5650492$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahriz, I</creatorcontrib><creatorcontrib>Oussar, Y</creatorcontrib><creatorcontrib>Denby, B</creatorcontrib><creatorcontrib>Dreyfus, Gérard</creatorcontrib><title>Carrier relevance study for indoor localization using GSM</title><title>2010 7th Workshop on Positioning, Navigation and Communication</title><addtitle>WPNC</addtitle><description>A study is made of subsets of relevant GSM carriers for an indoor localization problem. A database was created containing power measurement scans of all available GSM carriers in 5 of 8 rooms of a second storey laboratory in central Paris, France, and a statistical learning algorithm developed to discriminate between rooms based on these carrier strengths. To optimize the system, carrier relevance was ranked using either Orthogonal Forward Regression or Support Vector Machine - Recursive Feature Elimination procedures, and a subset of relevant variables obtained with cross-validation. Results show that the 60 most relevant carriers are sufficient to correctly localize 97% of scans in an independent test set.</description><subject>Classification algorithms</subject><subject>Fingerprint recognition</subject><subject>GSM</subject><subject>GSM networks</subject><subject>Indoor localization</subject><subject>Laboratories</subject><subject>Support vector machine classification</subject><subject>Training</subject><subject>variable selection</subject><isbn>1424471583</isbn><isbn>9781424471577</isbn><isbn>1424471575</isbn><isbn>9781424471584</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAUheNCUMd5AHGTF-h4b5ImzVKKjsL4Aw64HNLkRiK1laQjjE9vwVl9HDh8nMPYFcIKEezN--tzuxIwx1rXoKw4YReohFIG60aesWUpnwCARmuJ4pzZ1uWcKPNMPf24wRMv0z4ceBwzT0MYZ_Sjd336dVMaB74vafjg67enS3YaXV9oeeSCbe_vtu1DtXlZP7a3mypZmKoumODRGGwMWoMgKHSia2qIEHQ0Ubmg9LzUKC_ruadBGRmInPDRdcLKBbv-1yYi2n3n9OXyYXc8J_8AV8ZEpQ</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Ahriz, I</creator><creator>Oussar, Y</creator><creator>Denby, B</creator><creator>Dreyfus, Gérard</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201003</creationdate><title>Carrier relevance study for indoor localization using GSM</title><author>Ahriz, I ; Oussar, Y ; Denby, B ; Dreyfus, Gérard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bd7dc177187197102edb2b850f0d6f7f4ad4665074c3517760473deea2cfab293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Classification algorithms</topic><topic>Fingerprint recognition</topic><topic>GSM</topic><topic>GSM networks</topic><topic>Indoor localization</topic><topic>Laboratories</topic><topic>Support vector machine classification</topic><topic>Training</topic><topic>variable selection</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahriz, I</creatorcontrib><creatorcontrib>Oussar, Y</creatorcontrib><creatorcontrib>Denby, B</creatorcontrib><creatorcontrib>Dreyfus, Gérard</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahriz, I</au><au>Oussar, Y</au><au>Denby, B</au><au>Dreyfus, Gérard</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Carrier relevance study for indoor localization using GSM</atitle><btitle>2010 7th Workshop on Positioning, Navigation and Communication</btitle><stitle>WPNC</stitle><date>2010-03</date><risdate>2010</risdate><spage>168</spage><epage>173</epage><pages>168-173</pages><eisbn>1424471583</eisbn><eisbn>9781424471577</eisbn><eisbn>1424471575</eisbn><eisbn>9781424471584</eisbn><abstract>A study is made of subsets of relevant GSM carriers for an indoor localization problem. A database was created containing power measurement scans of all available GSM carriers in 5 of 8 rooms of a second storey laboratory in central Paris, France, and a statistical learning algorithm developed to discriminate between rooms based on these carrier strengths. To optimize the system, carrier relevance was ranked using either Orthogonal Forward Regression or Support Vector Machine - Recursive Feature Elimination procedures, and a subset of relevant variables obtained with cross-validation. Results show that the 60 most relevant carriers are sufficient to correctly localize 97% of scans in an independent test set.</abstract><pub>IEEE</pub><doi>10.1109/WPNC.2010.5650492</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 1424471583 |
ispartof | 2010 7th Workshop on Positioning, Navigation and Communication, 2010, p.168-173 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5650492 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Classification algorithms Fingerprint recognition GSM GSM networks Indoor localization Laboratories Support vector machine classification Training variable selection |
title | Carrier relevance study for indoor localization using GSM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Carrier%20relevance%20study%20for%20indoor%20localization%20using%20GSM&rft.btitle=2010%207th%20Workshop%20on%20Positioning,%20Navigation%20and%20Communication&rft.au=Ahriz,%20I&rft.date=2010-03&rft.spage=168&rft.epage=173&rft.pages=168-173&rft_id=info:doi/10.1109/WPNC.2010.5650492&rft_dat=%3Cieee_6IE%3E5650492%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424471583&rft.eisbn_list=9781424471577&rft.eisbn_list=1424471575&rft.eisbn_list=9781424471584&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5650492&rfr_iscdi=true |