Carrier relevance study for indoor localization using GSM
A study is made of subsets of relevant GSM carriers for an indoor localization problem. A database was created containing power measurement scans of all available GSM carriers in 5 of 8 rooms of a second storey laboratory in central Paris, France, and a statistical learning algorithm developed to di...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A study is made of subsets of relevant GSM carriers for an indoor localization problem. A database was created containing power measurement scans of all available GSM carriers in 5 of 8 rooms of a second storey laboratory in central Paris, France, and a statistical learning algorithm developed to discriminate between rooms based on these carrier strengths. To optimize the system, carrier relevance was ranked using either Orthogonal Forward Regression or Support Vector Machine - Recursive Feature Elimination procedures, and a subset of relevant variables obtained with cross-validation. Results show that the 60 most relevant carriers are sufficient to correctly localize 97% of scans in an independent test set. |
---|---|
DOI: | 10.1109/WPNC.2010.5650492 |