Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU
The estimation of the position of a person in a building is a must for creating Intelligent Spaces. State-of-the-art Local Positioning Systems (LPS) require a complex sensor-network infrastructure to locate with enough accuracy and coverage. Alternatively, Inertial Measuring Units (IMU) can be used...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The estimation of the position of a person in a building is a must for creating Intelligent Spaces. State-of-the-art Local Positioning Systems (LPS) require a complex sensor-network infrastructure to locate with enough accuracy and coverage. Alternatively, Inertial Measuring Units (IMU) can be used to estimate the movement of a person; a methodology that is called Pedestrian Dead-Reckoning (PDR). In this paper, we describe and implement a Kalman-based framework, called INS-EKF-ZUPT (IEZ), to estimate the position and attitude of a person while walking. IEZ makes use of an Extended Kalman filter (EKF), an INS mechanization algorithm, a Zero Velocity Update (ZUPT) methodology, as well as, a stance detection algorithm. As the IEZ methodology is not able to estimate the heading and its drift (non-observable variables), then several methods are used for heading drift reduction: ZARU, HDR and Compass. The main contribution of the paper is the integration of the heading drift reduction algorithms into a Kalman-based IEZ platform, which represents an extended PDR methodology (IEZ+) valid for operation in indoor spaces with local magnetic disturbances. The IEZ+ PDR methodology was tested in several simulated and real indoor scenarios with a low-performance IMU mounted on the foot. The positioning errors were about 1% of the total travelled distance, which are good figures if compared with other works using IMUs of higher performance. |
---|---|
DOI: | 10.1109/WPNC.2010.5649300 |