Motion planning for an omnidirectional robot with steering constraints

Omnidirectional mobile robots, i.e., robots that can move in any direction without changing their orientation, offer better manoeuvrability in natural environments. Modeling the kinematics of such robots is a challenging problem and different approaches have been investigated. One of the best approa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chamberland, Simon, Beaudry, Éric, Clavien, Lionel, Kabanza, Froduald, Michaud, François, Lauriay, Michel
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Omnidirectional mobile robots, i.e., robots that can move in any direction without changing their orientation, offer better manoeuvrability in natural environments. Modeling the kinematics of such robots is a challenging problem and different approaches have been investigated. One of the best approaches for a nonholonomic robot is to model the robot's velocity state as the motion around its instantaneous center of rotation (ICR). In this paper, we present a motion planner designed to compute efficient trajectories for such a robot in an environment with obstacles. The action space is modeled in terms of changes of the ICR and the motion around it. Our motion planner is based on a Rapidly-Exploring Random Trees (RRT) algorithm to sample the action space and find a feasible trajectory from an initial configuration to a goal configuration. To generate fluid paths, we introduce an adaptive sampling technique taking into account constraints related to the ICR-based action space.
ISSN:2153-0858
2153-0866
DOI:10.1109/IROS.2010.5648987