Statistical visual-dynamic model for hand-eye coordination

This paper introduces a new statistical method for combining vision and robot dynamics to generate trajectories to intercept a moving object. Previous methods only use information from the kinematics without considering the forces needed to move along the trajectory. Using robot dynamics allows extr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Beale, D, Iravani, P, Hall, P
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3936
container_issue
container_start_page 3931
container_title
container_volume
creator Beale, D
Iravani, P
Hall, P
description This paper introduces a new statistical method for combining vision and robot dynamics to generate trajectories to intercept a moving object. Previous methods only use information from the kinematics without considering the forces needed to move along the trajectory. Using robot dynamics allows extra measures, such as energy efficiency, to be optimised alongside maximising the likelihood of intercepting the target. We derive a statistical model for a vision system and a Lagrangian dynamical model of a robotic arm, showing how to relate joint torques to the vision. The method is tested by applying it to the problem of catching a simulated moving object.
doi_str_mv 10.1109/IROS.2010.5648832
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5648832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5648832</ieee_id><sourcerecordid>5648832</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b3f201be83060274b5da1093fe43753746094e40adb3e6842107713fbca486923</originalsourceid><addsrcrecordid>eNpVUNtKAzEUjDew1P0A8WV_IDXJObn5JsVLoVCw-lyymyxG9iKbVdi_N2ARfBqGYYaZIeSasxXnzN5uXnb7lWCZSoXGgDghhdWGo0BUSis8JQvBJVBmlDr7pyE7_9OkuSRFSh-M5ShtjVULcref3BTTFGvXlt8xfbmW-rl3XazLbvChLZthLN9d72mYQ1kPw-hjny1Df0UuGtemUBxxSd4eH17Xz3S7e9qs77c0ci0nWkGTq1fBAFNMaKykd3kUNAFBS9ComMWAzPkKgjIocjfNoalqh0ZZAUty85sbQwiHzzF2bpwPxyfgB7OqS84</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Statistical visual-dynamic model for hand-eye coordination</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Beale, D ; Iravani, P ; Hall, P</creator><creatorcontrib>Beale, D ; Iravani, P ; Hall, P</creatorcontrib><description>This paper introduces a new statistical method for combining vision and robot dynamics to generate trajectories to intercept a moving object. Previous methods only use information from the kinematics without considering the forces needed to move along the trajectory. Using robot dynamics allows extra measures, such as energy efficiency, to be optimised alongside maximising the likelihood of intercepting the target. We derive a statistical model for a vision system and a Lagrangian dynamical model of a robotic arm, showing how to relate joint torques to the vision. The method is tested by applying it to the problem of catching a simulated moving object.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424466740</identifier><identifier>ISBN: 1424466741</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424466764</identifier><identifier>EISBN: 1424466768</identifier><identifier>EISBN: 142446675X</identifier><identifier>EISBN: 9781424466757</identifier><identifier>DOI: 10.1109/IROS.2010.5648832</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Equations ; Joints ; Mathematical model ; Robot kinematics ; Trajectory</subject><ispartof>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.3931-3936</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5648832$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5648832$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Beale, D</creatorcontrib><creatorcontrib>Iravani, P</creatorcontrib><creatorcontrib>Hall, P</creatorcontrib><title>Statistical visual-dynamic model for hand-eye coordination</title><title>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>This paper introduces a new statistical method for combining vision and robot dynamics to generate trajectories to intercept a moving object. Previous methods only use information from the kinematics without considering the forces needed to move along the trajectory. Using robot dynamics allows extra measures, such as energy efficiency, to be optimised alongside maximising the likelihood of intercepting the target. We derive a statistical model for a vision system and a Lagrangian dynamical model of a robotic arm, showing how to relate joint torques to the vision. The method is tested by applying it to the problem of catching a simulated moving object.</description><subject>Cameras</subject><subject>Equations</subject><subject>Joints</subject><subject>Mathematical model</subject><subject>Robot kinematics</subject><subject>Trajectory</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424466740</isbn><isbn>1424466741</isbn><isbn>9781424466764</isbn><isbn>1424466768</isbn><isbn>142446675X</isbn><isbn>9781424466757</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUNtKAzEUjDew1P0A8WV_IDXJObn5JsVLoVCw-lyymyxG9iKbVdi_N2ARfBqGYYaZIeSasxXnzN5uXnb7lWCZSoXGgDghhdWGo0BUSis8JQvBJVBmlDr7pyE7_9OkuSRFSh-M5ShtjVULcref3BTTFGvXlt8xfbmW-rl3XazLbvChLZthLN9d72mYQ1kPw-hjny1Df0UuGtemUBxxSd4eH17Xz3S7e9qs77c0ci0nWkGTq1fBAFNMaKykd3kUNAFBS9ComMWAzPkKgjIocjfNoalqh0ZZAUty85sbQwiHzzF2bpwPxyfgB7OqS84</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Beale, D</creator><creator>Iravani, P</creator><creator>Hall, P</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>Statistical visual-dynamic model for hand-eye coordination</title><author>Beale, D ; Iravani, P ; Hall, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b3f201be83060274b5da1093fe43753746094e40adb3e6842107713fbca486923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cameras</topic><topic>Equations</topic><topic>Joints</topic><topic>Mathematical model</topic><topic>Robot kinematics</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Beale, D</creatorcontrib><creatorcontrib>Iravani, P</creatorcontrib><creatorcontrib>Hall, P</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beale, D</au><au>Iravani, P</au><au>Hall, P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Statistical visual-dynamic model for hand-eye coordination</atitle><btitle>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2010-10</date><risdate>2010</risdate><spage>3931</spage><epage>3936</epage><pages>3931-3936</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424466740</isbn><isbn>1424466741</isbn><eisbn>9781424466764</eisbn><eisbn>1424466768</eisbn><eisbn>142446675X</eisbn><eisbn>9781424466757</eisbn><abstract>This paper introduces a new statistical method for combining vision and robot dynamics to generate trajectories to intercept a moving object. Previous methods only use information from the kinematics without considering the forces needed to move along the trajectory. Using robot dynamics allows extra measures, such as energy efficiency, to be optimised alongside maximising the likelihood of intercepting the target. We derive a statistical model for a vision system and a Lagrangian dynamical model of a robotic arm, showing how to relate joint torques to the vision. The method is tested by applying it to the problem of catching a simulated moving object.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2010.5648832</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.3931-3936
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_5648832
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Equations
Joints
Mathematical model
Robot kinematics
Trajectory
title Statistical visual-dynamic model for hand-eye coordination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Statistical%20visual-dynamic%20model%20for%20hand-eye%20coordination&rft.btitle=2010%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Beale,%20D&rft.date=2010-10&rft.spage=3931&rft.epage=3936&rft.pages=3931-3936&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424466740&rft.isbn_list=1424466741&rft_id=info:doi/10.1109/IROS.2010.5648832&rft_dat=%3Cieee_6IE%3E5648832%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424466764&rft.eisbn_list=1424466768&rft.eisbn_list=142446675X&rft.eisbn_list=9781424466757&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5648832&rfr_iscdi=true