Statistical visual-dynamic model for hand-eye coordination
This paper introduces a new statistical method for combining vision and robot dynamics to generate trajectories to intercept a moving object. Previous methods only use information from the kinematics without considering the forces needed to move along the trajectory. Using robot dynamics allows extr...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a new statistical method for combining vision and robot dynamics to generate trajectories to intercept a moving object. Previous methods only use information from the kinematics without considering the forces needed to move along the trajectory. Using robot dynamics allows extra measures, such as energy efficiency, to be optimised alongside maximising the likelihood of intercepting the target. We derive a statistical model for a vision system and a Lagrangian dynamical model of a robotic arm, showing how to relate joint torques to the vision. The method is tested by applying it to the problem of catching a simulated moving object. |
---|---|
ISSN: | 2153-0858 2153-0866 |
DOI: | 10.1109/IROS.2010.5648832 |