Gradient Profile Prior and Its Applications in Image Super-Resolution and Enhancement

In this paper, we propose a novel generic image prior-gradient profile prior, which implies the prior knowledge of natural image gradients. In this prior, the image gradients are represented by gradient profiles, which are 1-D profiles of gradient magnitudes perpendicular to image structures. We mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2011-06, Vol.20 (6), p.1529-1542
Hauptverfasser: Sun, Jian, Xu, Zongben, Shum, Heung-Yeung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a novel generic image prior-gradient profile prior, which implies the prior knowledge of natural image gradients. In this prior, the image gradients are represented by gradient profiles, which are 1-D profiles of gradient magnitudes perpendicular to image structures. We model the gradient profiles by a parametric gradient profile model. Using this model, the prior knowledge of the gradient profiles are learned from a large collection of natural images, which are called gradient profile prior. Based on this prior, we propose a gradient field transformation to constrain the gradient fields of the high resolution image and the enhanced image when performing single image super-resolution and sharpness enhancement. With this simple but very effective approach, we are able to produce state-of-the-art results. The reconstructed high resolution images or the enhanced images are sharp while have rare ringing or jaggy artifacts.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2010.2095871