A MITE-Based Translinear FPAA

While the development of reconfigurable analog platforms is a blossoming field, the tradeoff between usability and flexibility continues to be a major barrier. Field Programmable Analog Arrays (FPAAs) built with translinear elements offer a promising solution to this problem. These FPAAs can be buil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2012-01, Vol.20 (1), p.1-9
Hauptverfasser: Schlottmann, C. R., Abramson, D., Hasler, P. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While the development of reconfigurable analog platforms is a blossoming field, the tradeoff between usability and flexibility continues to be a major barrier. Field Programmable Analog Arrays (FPAAs) built with translinear elements offer a promising solution to this problem. These FPAAs can be built to use previously developed synthesis procedures for translinear circuits. Furthermore, large-scale translinear FPAAs can be built using floating-gate transistors as both the computational elements and the reconfigurable interconnect network. An FPAA built using Multiple Input Translinear Elements (MITEs) has been designed, fabricated in 0.35 μ m CMOS, and tested. These devices have been programmed to implement various circuits including multipliers, squaring circuits, RMS-to-DC converters, and filters. In addition, synthesis, place-and-route, and programming tools have been created in order to implement a reconfigurable system where the circuits implemented are described only by equations. The continued development of translinear FPAAs will lead to a reconfigurable analog system that allows for a large portion of the design to be abstracted away from the user.
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2010.2089705