System identification of Local Field Potentials under Deep Brain Stimulation in a healthy primate

High frequency (HF) Deep Brain Stimulation (DBS) in the Sub-Thalamic Nucleus (STN) is a clinically recognized therapy for the treatment of motor disorders in Parkinson Disease (PD). The underlying mechanisms of DBS and how it impacts neighboring nuclei, however, are not yet completely understood. El...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.4144-4147
Hauptverfasser: Pedoto, G, Santaniello, S, Montgomery, E B, Gale, J T, Fiengo, G, Glielmo, L, Sarma, S V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High frequency (HF) Deep Brain Stimulation (DBS) in the Sub-Thalamic Nucleus (STN) is a clinically recognized therapy for the treatment of motor disorders in Parkinson Disease (PD). The underlying mechanisms of DBS and how it impacts neighboring nuclei, however, are not yet completely understood. Electrophysiological data has been collected in PD patients and primates to better understand the impact of DBS on STN and the entire Basal Ganglia (BG) motor circuit. We use single unit recordings from Globus Pallidus, both pars interna and externa segments (GPi and GPe) in the BG, in a normal primate before and after DBS to reconstruct Local Field Potentials (LFPs) in the region. We then use system identification techniques to understand how GPe LFP activity and the DBS signal applied to STN influence GPi LFP activity. Our models suggest that when no stimulation is applied, the GPe LFPs have an inhibitory effect on GPi LFPs with a 2-3 ms delay, as is the case for single unit neuronal activity. On the other hand, when DBS is ON the models suggest that stimulation has a dominant effect on GPi LFPs which mask the inhibitory effects of GPe.
ISSN:1094-687X
2375-7477
1557-170X
1558-4615
DOI:10.1109/IEMBS.2010.5627356