Automatic learning of spatial patterns for diagnosis of skin lesions
We present a technique for automatic diagnosis of malignant melanoma based exclusively on local pattern analysis. The technique relies on local binary patterns in small sections in the image, and automatically selects the relevant texture features from those that discriminate best between benign and...
Gespeichert in:
Veröffentlicht in: | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.5601-5604 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a technique for automatic diagnosis of malignant melanoma based exclusively on local pattern analysis. The technique relies on local binary patterns in small sections in the image, and automatically selects the relevant texture features from those that discriminate best between benign and malignant skin lesions. The classification is performed using support vector machines, and the feature vectors are clustered using K-means clustering. The effects of K and window size are investigated. Reported average specificity and sensitivity are 73% for optimal parameter choice, indicating that the procedure is a useful part of a diagnostic system. |
---|---|
ISSN: | 1094-687X 1557-170X 1558-4615 |
DOI: | 10.1109/IEMBS.2010.5626801 |