Non-parametric kernel density estimation for the prediction of neoadjuvant chemotherapy outcomes

In this paper we propose an application of local statistical models to the problem of identifying patients with pathologic complete response (PCR) to neoadjuvant chemotherapy. The idea of using local models is to split the input space (with data from PCR and NoPCR patients) and build a model for eac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.1775-1778
Hauptverfasser: Wanderley, M F B, Braga, Antônio P, Mendes, E M A M, Natowicz, René, Rouzier, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we propose an application of local statistical models to the problem of identifying patients with pathologic complete response (PCR) to neoadjuvant chemotherapy. The idea of using local models is to split the input space (with data from PCR and NoPCR patients) and build a model for each partition. After the construction of the models we used bayesian classifiers and logistic regression to classify patients in the two classes.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/IEMBS.2010.5626748