Surface electromyogram signals classification based on bispectrum
This paper bispectrum is used to classify human arm movements and control a robotic arm based on upper limb's surface electromyogram signals (sEMG). We use bispectrum based on third-order cumulant to parameterize sEMG signals and classify elbow flexion and extension, forearm pronation and supin...
Gespeichert in:
Veröffentlicht in: | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.4610-4613 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper bispectrum is used to classify human arm movements and control a robotic arm based on upper limb's surface electromyogram signals (sEMG). We use bispectrum based on third-order cumulant to parameterize sEMG signals and classify elbow flexion and extension, forearm pronation and supination, and rest states by an artificial neural network (ANN). Finally, a robotic manipulator is controlled based on classification and parameters extracted from the signals. All this process is made in real-time using QNX ® operative system. |
---|---|
ISSN: | 1094-687X 1557-170X 1558-4615 |
DOI: | 10.1109/IEMBS.2010.5626516 |