Application of Empirical Mode Decomposition and Teager energy operator to EEG signals for mental task classification

This paper presents a novel method for mental task classification from EEG signals using Empirical Mode Decomposition and Teager energy operator techniques on EEG data. The efficacy of these techniques for non-stationary and non-linear data has already been demonstrated, which therefore lend themsel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.4590-4593
Hauptverfasser: Kaleem, M F, Sugavaneswaran, L, Guergachi, A, Krishnan, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4593
container_issue
container_start_page 4590
container_title 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
container_volume 2010
creator Kaleem, M F
Sugavaneswaran, L
Guergachi, A
Krishnan, S
description This paper presents a novel method for mental task classification from EEG signals using Empirical Mode Decomposition and Teager energy operator techniques on EEG data. The efficacy of these techniques for non-stationary and non-linear data has already been demonstrated, which therefore lend themselves well to EEG signals, which are also non-stationary and non-linear in nature. The method described in this paper decomposed the EEG signals (6 EEG signals per task per subject, for a total of 5 tasks over multiple trials) into their constituent oscillatory modes, called intrinsic mode functions, and separated out the trend from the signal. Teager energy operator was used to calculate the average energy of both the detrended signal and the trend. The average energy was used to construct separate feature vectors with a small number of parameters for the detrended signal and the trend. Based on these parameters, one-versus-one classification of mental tasks was performed using Linear Discriminant Analysis. Using both feature vectors, an average correct classification rate of more than 85% was achieved, demonstrating the effectiveness of the method used. Furthermore, this method used all the intrinsic mode functions, as opposed to similar studies, demonstrating that the trend of the EEG signal also contains important discriminatory information.
doi_str_mv 10.1109/IEMBS.2010.5626501
format Article
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_5626501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5626501</ieee_id><sourcerecordid>21096224</sourcerecordid><originalsourceid>FETCH-LOGICAL-i333t-6945f9563fefbe838e9486668ba979de05088a9d0feae1854b6dbec9287922fc3</originalsourceid><addsrcrecordid>eNpFkMlOAzEQRM0mssAPgIT8AxO8xz6GMIRIiTgQJG6RZ6YdGWbTeDjk77FIgFOr-pWqVY3QDSUTSom5X6brh9cJI1FLxZQk9ASNqGBCCMoEO0VDKqVOhKLy7B9wcR4BMSJRevo-QKMQPghhhEh6iQYsEsWYGKJ-1ralz23vmxo3DqdV67uoS7xuCsCPkDdV2wT_w21d4A3YHXQYauh2e9y00Nm-6XDf4DRd4OB3tS0DdnFVQd3HnN6GT5yXNgTvjoeu0IWLLrg-zjF6e0o38-dk9bJYzmerxHPO-0QZIZ2RijtwGWiuwQitlNKZNVNTAJFEa2sK4sAC1VJkqsggN0xPDWMu52N0d8htv7IKim3b-cp2--1v_Wi4PRg8APzh45v5N9Z-a-0</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Empirical Mode Decomposition and Teager energy operator to EEG signals for mental task classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kaleem, M F ; Sugavaneswaran, L ; Guergachi, A ; Krishnan, S</creator><creatorcontrib>Kaleem, M F ; Sugavaneswaran, L ; Guergachi, A ; Krishnan, S</creatorcontrib><description>This paper presents a novel method for mental task classification from EEG signals using Empirical Mode Decomposition and Teager energy operator techniques on EEG data. The efficacy of these techniques for non-stationary and non-linear data has already been demonstrated, which therefore lend themselves well to EEG signals, which are also non-stationary and non-linear in nature. The method described in this paper decomposed the EEG signals (6 EEG signals per task per subject, for a total of 5 tasks over multiple trials) into their constituent oscillatory modes, called intrinsic mode functions, and separated out the trend from the signal. Teager energy operator was used to calculate the average energy of both the detrended signal and the trend. The average energy was used to construct separate feature vectors with a small number of parameters for the detrended signal and the trend. Based on these parameters, one-versus-one classification of mental tasks was performed using Linear Discriminant Analysis. Using both feature vectors, an average correct classification rate of more than 85% was achieved, demonstrating the effectiveness of the method used. Furthermore, this method used all the intrinsic mode functions, as opposed to similar studies, demonstrating that the trend of the EEG signal also contains important discriminatory information.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441234</identifier><identifier>ISBN: 9781424441235</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441242</identifier><identifier>EISBN: 9781424441242</identifier><identifier>DOI: 10.1109/IEMBS.2010.5626501</identifier><identifier>PMID: 21096224</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Brain - physiopathology ; Brain Mapping - methods ; Cognition - physiology ; Conferences ; Electroencephalography ; Electroencephalography - methods ; Feature extraction ; Humans ; Indexes ; Signal analysis ; Task Performance and Analysis ; USA Councils ; Vectors</subject><ispartof>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.4590-4593</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5626501$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5626501$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21096224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaleem, M F</creatorcontrib><creatorcontrib>Sugavaneswaran, L</creatorcontrib><creatorcontrib>Guergachi, A</creatorcontrib><creatorcontrib>Krishnan, S</creatorcontrib><title>Application of Empirical Mode Decomposition and Teager energy operator to EEG signals for mental task classification</title><title>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>This paper presents a novel method for mental task classification from EEG signals using Empirical Mode Decomposition and Teager energy operator techniques on EEG data. The efficacy of these techniques for non-stationary and non-linear data has already been demonstrated, which therefore lend themselves well to EEG signals, which are also non-stationary and non-linear in nature. The method described in this paper decomposed the EEG signals (6 EEG signals per task per subject, for a total of 5 tasks over multiple trials) into their constituent oscillatory modes, called intrinsic mode functions, and separated out the trend from the signal. Teager energy operator was used to calculate the average energy of both the detrended signal and the trend. The average energy was used to construct separate feature vectors with a small number of parameters for the detrended signal and the trend. Based on these parameters, one-versus-one classification of mental tasks was performed using Linear Discriminant Analysis. Using both feature vectors, an average correct classification rate of more than 85% was achieved, demonstrating the effectiveness of the method used. Furthermore, this method used all the intrinsic mode functions, as opposed to similar studies, demonstrating that the trend of the EEG signal also contains important discriminatory information.</description><subject>Algorithms</subject><subject>Brain - physiopathology</subject><subject>Brain Mapping - methods</subject><subject>Cognition - physiology</subject><subject>Conferences</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Indexes</subject><subject>Signal analysis</subject><subject>Task Performance and Analysis</subject><subject>USA Councils</subject><subject>Vectors</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441234</isbn><isbn>9781424441235</isbn><isbn>1424441242</isbn><isbn>9781424441242</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkMlOAzEQRM0mssAPgIT8AxO8xz6GMIRIiTgQJG6RZ6YdGWbTeDjk77FIgFOr-pWqVY3QDSUTSom5X6brh9cJI1FLxZQk9ASNqGBCCMoEO0VDKqVOhKLy7B9wcR4BMSJRevo-QKMQPghhhEh6iQYsEsWYGKJ-1ralz23vmxo3DqdV67uoS7xuCsCPkDdV2wT_w21d4A3YHXQYauh2e9y00Nm-6XDf4DRd4OB3tS0DdnFVQd3HnN6GT5yXNgTvjoeu0IWLLrg-zjF6e0o38-dk9bJYzmerxHPO-0QZIZ2RijtwGWiuwQitlNKZNVNTAJFEa2sK4sAC1VJkqsggN0xPDWMu52N0d8htv7IKim3b-cp2--1v_Wi4PRg8APzh45v5N9Z-a-0</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Kaleem, M F</creator><creator>Sugavaneswaran, L</creator><creator>Guergachi, A</creator><creator>Krishnan, S</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20100101</creationdate><title>Application of Empirical Mode Decomposition and Teager energy operator to EEG signals for mental task classification</title><author>Kaleem, M F ; Sugavaneswaran, L ; Guergachi, A ; Krishnan, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i333t-6945f9563fefbe838e9486668ba979de05088a9d0feae1854b6dbec9287922fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Brain - physiopathology</topic><topic>Brain Mapping - methods</topic><topic>Cognition - physiology</topic><topic>Conferences</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Indexes</topic><topic>Signal analysis</topic><topic>Task Performance and Analysis</topic><topic>USA Councils</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaleem, M F</creatorcontrib><creatorcontrib>Sugavaneswaran, L</creatorcontrib><creatorcontrib>Guergachi, A</creatorcontrib><creatorcontrib>Krishnan, S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaleem, M F</au><au>Sugavaneswaran, L</au><au>Guergachi, A</au><au>Krishnan, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Empirical Mode Decomposition and Teager energy operator to EEG signals for mental task classification</atitle><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><spage>4590</spage><epage>4593</epage><pages>4590-4593</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441234</isbn><isbn>9781424441235</isbn><eisbn>1424441242</eisbn><eisbn>9781424441242</eisbn><abstract>This paper presents a novel method for mental task classification from EEG signals using Empirical Mode Decomposition and Teager energy operator techniques on EEG data. The efficacy of these techniques for non-stationary and non-linear data has already been demonstrated, which therefore lend themselves well to EEG signals, which are also non-stationary and non-linear in nature. The method described in this paper decomposed the EEG signals (6 EEG signals per task per subject, for a total of 5 tasks over multiple trials) into their constituent oscillatory modes, called intrinsic mode functions, and separated out the trend from the signal. Teager energy operator was used to calculate the average energy of both the detrended signal and the trend. The average energy was used to construct separate feature vectors with a small number of parameters for the detrended signal and the trend. Based on these parameters, one-versus-one classification of mental tasks was performed using Linear Discriminant Analysis. Using both feature vectors, an average correct classification rate of more than 85% was achieved, demonstrating the effectiveness of the method used. Furthermore, this method used all the intrinsic mode functions, as opposed to similar studies, demonstrating that the trend of the EEG signal also contains important discriminatory information.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21096224</pmid><doi>10.1109/IEMBS.2010.5626501</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.4590-4593
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_5626501
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Brain - physiopathology
Brain Mapping - methods
Cognition - physiology
Conferences
Electroencephalography
Electroencephalography - methods
Feature extraction
Humans
Indexes
Signal analysis
Task Performance and Analysis
USA Councils
Vectors
title Application of Empirical Mode Decomposition and Teager energy operator to EEG signals for mental task classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Empirical%20Mode%20Decomposition%20and%20Teager%20energy%20operator%20to%20EEG%20signals%20for%20mental%20task%20classification&rft.jtitle=2010%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology&rft.au=Kaleem,%20M%20F&rft.date=2010-01-01&rft.volume=2010&rft.spage=4590&rft.epage=4593&rft.pages=4590-4593&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441234&rft.isbn_list=9781424441235&rft_id=info:doi/10.1109/IEMBS.2010.5626501&rft_dat=%3Cpubmed_6IE%3E21096224%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441242&rft.eisbn_list=9781424441242&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21096224&rft_ieee_id=5626501&rfr_iscdi=true