Evolved fuzzy reasoning model for hypoglycaemic detection

Hypoglycaemia is a serious side effect of insulin therapy in patients with diabetes. We measure physiological parameters (heart rate, corrected QT interval of the electrocardiogram (ECG) signal) continuously to provide early detection of hypoglycemic episodes in Type 1 diabetes mellitus (T1DM) patie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.4662-4665
Hauptverfasser: Ling, S H, Nuryani, Nguyen, H T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hypoglycaemia is a serious side effect of insulin therapy in patients with diabetes. We measure physiological parameters (heart rate, corrected QT interval of the electrocardiogram (ECG) signal) continuously to provide early detection of hypoglycemic episodes in Type 1 diabetes mellitus (T1DM) patients. Based on the physiological parameters, an evolved fuzzy reasoning model (FRM) to recognize the presence of hypoglycaemic episodes is developed. To optimize the fuzzy rules and the fuzzy membership functions of FRM, an evolutionary algorithm called hybrid particle swarm optimization with wavelet mutation operation is investigated. All data sets are collected from Department of Health, Government of Western Australia for a clinical study. The results show that the proposed algorithm performs well in terms of the clinical sensitivity and specificity.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/IEMBS.2010.5626450