Vessel network detection using contour evolution and color components

Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration. An extensive related literature often exclude...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.3129-3132
Hauptverfasser: Ushizima, D M, Medeiros, F N S, Cuadros, J, Martins, C I O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3132
container_issue
container_start_page 3129
container_title 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
container_volume 2010
creator Ushizima, D M
Medeiros, F N S
Cuadros, J
Martins, C I O
description Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration. An extensive related literature often excludes the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper consists in an algorithm using front propagation to segment the vessel network, including a penalty on the wait queue to the fast marching method, which minimizes leakage of the evolving boundary. The algorithm requires no manual labeling of seeds, a minimum number of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem.
doi_str_mv 10.1109/IEMBS.2010.5626090
format Article
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_5626090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5626090</ieee_id><sourcerecordid>21095748</sourcerecordid><originalsourceid>FETCH-LOGICAL-i377t-88ae792268df3f1dcd766fdb3d339c0a53dc66c30fb4a201f94d932adb82e08b3</originalsourceid><addsrcrecordid>eNpFkNlOwzAQRc0musAPgITyAyneYz_SKkClIh5YxFvlxBMUSOwqTkD8PRYt8DKjuedqpHsROiN4RgjWl8v8bv4wozjeQlKJNd5DE8Ip55xQTvfRmAihUi6JOPgHjB9GgDVPpcpeRmgSwhvGFGNBjtGIRiIyrsYof4YQoEkc9J--e08s9FD2tXfJEGr3mpTe9X7oEvjwzfCjG2ej2vguznbjHbg-nKCjyjQBTnd7ip6u88fFbbq6v1kurlZpzbKsT5UykGlKpbIVq4gtbSZlZQtmGdMlNoLZUsqS4argJiauNLeaUWMLRQGrgk3RxfbvZihasOtNV7em-1r_5omG862hBoA_vOuNfQPb41wL</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vessel network detection using contour evolution and color components</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ushizima, D M ; Medeiros, F N S ; Cuadros, J ; Martins, C I O</creator><creatorcontrib>Ushizima, D M ; Medeiros, F N S ; Cuadros, J ; Martins, C I O</creatorcontrib><description>Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration. An extensive related literature often excludes the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper consists in an algorithm using front propagation to segment the vessel network, including a penalty on the wait queue to the fast marching method, which minimizes leakage of the evolving boundary. The algorithm requires no manual labeling of seeds, a minimum number of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 1424441234</identifier><identifier>ISBN: 9781424441235</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441242</identifier><identifier>EISBN: 9781424441242</identifier><identifier>DOI: 10.1109/IEMBS.2010.5626090</identifier><identifier>PMID: 21095748</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Colorimetry - methods ; Diabetic Retinopathy - pathology ; Humans ; Image color analysis ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; Pattern Recognition, Automated - methods ; Pixel ; Reproducibility of Results ; Retina ; Retinal Vessels - pathology ; Retinopathy ; Retinoscopy - methods ; Sensitivity and Specificity</subject><ispartof>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.3129-3132</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5626090$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5626090$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21095748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ushizima, D M</creatorcontrib><creatorcontrib>Medeiros, F N S</creatorcontrib><creatorcontrib>Cuadros, J</creatorcontrib><creatorcontrib>Martins, C I O</creatorcontrib><title>Vessel network detection using contour evolution and color components</title><title>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration. An extensive related literature often excludes the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper consists in an algorithm using front propagation to segment the vessel network, including a penalty on the wait queue to the fast marching method, which minimizes leakage of the evolving boundary. The algorithm requires no manual labeling of seeds, a minimum number of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Colorimetry - methods</subject><subject>Diabetic Retinopathy - pathology</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pixel</subject><subject>Reproducibility of Results</subject><subject>Retina</subject><subject>Retinal Vessels - pathology</subject><subject>Retinopathy</subject><subject>Retinoscopy - methods</subject><subject>Sensitivity and Specificity</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>1424441234</isbn><isbn>9781424441235</isbn><isbn>1424441242</isbn><isbn>9781424441242</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkNlOwzAQRc0musAPgITyAyneYz_SKkClIh5YxFvlxBMUSOwqTkD8PRYt8DKjuedqpHsROiN4RgjWl8v8bv4wozjeQlKJNd5DE8Ip55xQTvfRmAihUi6JOPgHjB9GgDVPpcpeRmgSwhvGFGNBjtGIRiIyrsYof4YQoEkc9J--e08s9FD2tXfJEGr3mpTe9X7oEvjwzfCjG2ej2vguznbjHbg-nKCjyjQBTnd7ip6u88fFbbq6v1kurlZpzbKsT5UykGlKpbIVq4gtbSZlZQtmGdMlNoLZUsqS4argJiauNLeaUWMLRQGrgk3RxfbvZihasOtNV7em-1r_5omG862hBoA_vOuNfQPb41wL</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Ushizima, D M</creator><creator>Medeiros, F N S</creator><creator>Cuadros, J</creator><creator>Martins, C I O</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20100101</creationdate><title>Vessel network detection using contour evolution and color components</title><author>Ushizima, D M ; Medeiros, F N S ; Cuadros, J ; Martins, C I O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i377t-88ae792268df3f1dcd766fdb3d339c0a53dc66c30fb4a201f94d932adb82e08b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Colorimetry - methods</topic><topic>Diabetic Retinopathy - pathology</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pixel</topic><topic>Reproducibility of Results</topic><topic>Retina</topic><topic>Retinal Vessels - pathology</topic><topic>Retinopathy</topic><topic>Retinoscopy - methods</topic><topic>Sensitivity and Specificity</topic><toplevel>online_resources</toplevel><creatorcontrib>Ushizima, D M</creatorcontrib><creatorcontrib>Medeiros, F N S</creatorcontrib><creatorcontrib>Cuadros, J</creatorcontrib><creatorcontrib>Martins, C I O</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ushizima, D M</au><au>Medeiros, F N S</au><au>Cuadros, J</au><au>Martins, C I O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vessel network detection using contour evolution and color components</atitle><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><spage>3129</spage><epage>3132</epage><pages>3129-3132</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>1424441234</isbn><isbn>9781424441235</isbn><eisbn>1424441242</eisbn><eisbn>9781424441242</eisbn><abstract>Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration. An extensive related literature often excludes the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper consists in an algorithm using front propagation to segment the vessel network, including a penalty on the wait queue to the fast marching method, which minimizes leakage of the evolving boundary. The algorithm requires no manual labeling of seeds, a minimum number of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21095748</pmid><doi>10.1109/IEMBS.2010.5626090</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, Vol.2010, p.3129-3132
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_5626090
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Algorithms
Artificial Intelligence
Colorimetry - methods
Diabetic Retinopathy - pathology
Humans
Image color analysis
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image segmentation
Pattern Recognition, Automated - methods
Pixel
Reproducibility of Results
Retina
Retinal Vessels - pathology
Retinopathy
Retinoscopy - methods
Sensitivity and Specificity
title Vessel network detection using contour evolution and color components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vessel%20network%20detection%20using%20contour%20evolution%20and%20color%20components&rft.jtitle=2010%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology&rft.au=Ushizima,%20D%20M&rft.date=2010-01-01&rft.volume=2010&rft.spage=3129&rft.epage=3132&rft.pages=3129-3132&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441234&rft.isbn_list=9781424441235&rft_id=info:doi/10.1109/IEMBS.2010.5626090&rft_dat=%3Cpubmed_6IE%3E21095748%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441242&rft.eisbn_list=9781424441242&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21095748&rft_ieee_id=5626090&rfr_iscdi=true