Vessel network detection using contour evolution and color components

Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration. An extensive related literature often exclude...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.3129-3132
Hauptverfasser: Ushizima, D M, Medeiros, F N S, Cuadros, J, Martins, C I O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration. An extensive related literature often excludes the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper consists in an algorithm using front propagation to segment the vessel network, including a penalty on the wait queue to the fast marching method, which minimizes leakage of the evolving boundary. The algorithm requires no manual labeling of seeds, a minimum number of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/IEMBS.2010.5626090