Vessel network detection using contour evolution and color components
Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration. An extensive related literature often exclude...
Gespeichert in:
Veröffentlicht in: | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.3129-3132 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration. An extensive related literature often excludes the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper consists in an algorithm using front propagation to segment the vessel network, including a penalty on the wait queue to the fast marching method, which minimizes leakage of the evolving boundary. The algorithm requires no manual labeling of seeds, a minimum number of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem. |
---|---|
ISSN: | 1094-687X 1557-170X 1558-4615 |
DOI: | 10.1109/IEMBS.2010.5626090 |