Variable optimisation of medical image data by the learning Bayesian Network reasoning
The method proposed here uses Bayesian non-linear classifier to select optimal subset of attributes to avoid redundant variables and reduce data uncertainty in the classification process often used in medical diagnosis. The method also exploits the structural reasoning ability of Bayesian Networks (...
Gespeichert in:
Veröffentlicht in: | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, Vol.2010, p.4554-4557 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The method proposed here uses Bayesian non-linear classifier to select optimal subset of attributes to avoid redundant variables and reduce data uncertainty in the classification process often used in medical diagnosis. The method also exploits the structural reasoning ability of Bayesian Networks (BN) to optimize large number of attributes to prevent overfitting, meanwhile it maintains the high classification accuracy. This process simplifies the complex data analyses and may lead to a cost reduction in clinical data acquisition process. |
---|---|
ISSN: | 1094-687X 1557-170X 1558-4615 |
DOI: | 10.1109/IEMBS.2010.5626046 |