Adaptive Beamforming Using the Reconfigurable MONTIUM TP

Until a decade ago, the concept of phased array beam forming was mainly implemented with mechanical or analog solutions. Today, digital hardware has become powerful enough to perform the massive number of operations required for real-time digital beam forming. While more and more applications are us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: van de Burgwal, Marcel D, Rovers, Kenneth C, Blom, Koen C H, Kokkeler, André B J, Smit, Gerard J M
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Until a decade ago, the concept of phased array beam forming was mainly implemented with mechanical or analog solutions. Today, digital hardware has become powerful enough to perform the massive number of operations required for real-time digital beam forming. While more and more applications are using beam forming to improve the communication channel utilization both in space and frequency, many dedicated digital architectures are proposed for the processing. By using a reconfigurable architecture, the same hardware platform can be reused for different applications with different processing needs. In this paper, we present a reconfigurable Multi-processor System-on-Chip based solution for phased array processing that supports advanced tracking mechanisms to continuously receive signals with a mobile receiver. An adaptive beam former for DVB-S satellite reception is presented, that uses a Constant Modulus Algorithm to track satellites. The processing of a receiver with 64 antennas and 3 beams is mapped on a reconfigurable processor named Montium TP. The total implementation of such a receiver requires about 570 clock cycles on a single Montium TP, but can also be partitioned over multiple Montium TPs to support larger phased arrays.
DOI:10.1109/DSD.2010.13