GA neural network of the cost of the building graphic of the analysis and understanding
The costs of pre-building graphic in the construction project management is a very important job, based on neural network theory and the characteristics of the costs of building graphic, raised GA neural network to solve the cost of building graphic problem, applied BP network model and used GA to o...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | |
container_start_page | 305 |
container_title | |
container_volume | 1 |
creator | Kuancheng Zou Ye Qian Yafei Li Pengfei Zhang |
description | The costs of pre-building graphic in the construction project management is a very important job, based on neural network theory and the characteristics of the costs of building graphic, raised GA neural network to solve the cost of building graphic problem, applied BP network model and used GA to optimize the weight based on BP algorithm. The calculation examples showed that the accuracy of the cost estimation met the requirements basically. |
doi_str_mv | 10.1109/CMCE.2010.5610497 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5610497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5610497</ieee_id><sourcerecordid>5610497</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6bb34707e7c14a5aadb6917548db4975f48d95b1f51d7627552500f73dfccaab3</originalsourceid><addsrcrecordid>eNo1kMtKAzEYhSMqWOs8gLjJC0zN_bIsQ61CxU3BZUkmSRsdZ0oyRfr2BuyszncOPz-cA8AjRguMkX5u3pvVgqBiucCIaXkF7jEjjEnNFbsGlZZq8pLegBnBXNcCEXEHqpy_EEIUK6WkmoHP9RL2_pRMV2T8HdI3HAIcDx62Qx4ntqfYudjv4T6Z4yG2U256051zzAUcPPXOpzwWLJcP4DaYLvvqonOwfVltm9d687F-a5abOmo01sJayiSSXraYGW6Ms0JjyZlytvTioYDmFgeOnRREck44QkFSF9rWGEvn4On_bfTe744p_ph03l1moX-HB1Qi</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>GA neural network of the cost of the building graphic of the analysis and understanding</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kuancheng Zou ; Ye Qian ; Yafei Li ; Pengfei Zhang</creator><creatorcontrib>Kuancheng Zou ; Ye Qian ; Yafei Li ; Pengfei Zhang</creatorcontrib><description>The costs of pre-building graphic in the construction project management is a very important job, based on neural network theory and the characteristics of the costs of building graphic, raised GA neural network to solve the cost of building graphic problem, applied BP network model and used GA to optimize the weight based on BP algorithm. The calculation examples showed that the accuracy of the cost estimation met the requirements basically.</description><identifier>ISSN: 2159-6026</identifier><identifier>ISBN: 9781424479573</identifier><identifier>ISBN: 1424479576</identifier><identifier>EISBN: 1424479584</identifier><identifier>EISBN: 9781424479580</identifier><identifier>EISBN: 9781424479559</identifier><identifier>EISBN: 142447955X</identifier><identifier>DOI: 10.1109/CMCE.2010.5610497</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; BP algorithm ; Gallium ; Neural network ; the cost of building graphic</subject><ispartof>2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010, Vol.1, p.305-308</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5610497$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5610497$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuancheng Zou</creatorcontrib><creatorcontrib>Ye Qian</creatorcontrib><creatorcontrib>Yafei Li</creatorcontrib><creatorcontrib>Pengfei Zhang</creatorcontrib><title>GA neural network of the cost of the building graphic of the analysis and understanding</title><title>2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering</title><addtitle>CMCE</addtitle><description>The costs of pre-building graphic in the construction project management is a very important job, based on neural network theory and the characteristics of the costs of building graphic, raised GA neural network to solve the cost of building graphic problem, applied BP network model and used GA to optimize the weight based on BP algorithm. The calculation examples showed that the accuracy of the cost estimation met the requirements basically.</description><subject>Adaptation model</subject><subject>BP algorithm</subject><subject>Gallium</subject><subject>Neural network</subject><subject>the cost of building graphic</subject><issn>2159-6026</issn><isbn>9781424479573</isbn><isbn>1424479576</isbn><isbn>1424479584</isbn><isbn>9781424479580</isbn><isbn>9781424479559</isbn><isbn>142447955X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtKAzEYhSMqWOs8gLjJC0zN_bIsQ61CxU3BZUkmSRsdZ0oyRfr2BuyszncOPz-cA8AjRguMkX5u3pvVgqBiucCIaXkF7jEjjEnNFbsGlZZq8pLegBnBXNcCEXEHqpy_EEIUK6WkmoHP9RL2_pRMV2T8HdI3HAIcDx62Qx4ntqfYudjv4T6Z4yG2U256051zzAUcPPXOpzwWLJcP4DaYLvvqonOwfVltm9d687F-a5abOmo01sJayiSSXraYGW6Ms0JjyZlytvTioYDmFgeOnRREck44QkFSF9rWGEvn4On_bfTe744p_ph03l1moX-HB1Qi</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Kuancheng Zou</creator><creator>Ye Qian</creator><creator>Yafei Li</creator><creator>Pengfei Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>GA neural network of the cost of the building graphic of the analysis and understanding</title><author>Kuancheng Zou ; Ye Qian ; Yafei Li ; Pengfei Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6bb34707e7c14a5aadb6917548db4975f48d95b1f51d7627552500f73dfccaab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation model</topic><topic>BP algorithm</topic><topic>Gallium</topic><topic>Neural network</topic><topic>the cost of building graphic</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuancheng Zou</creatorcontrib><creatorcontrib>Ye Qian</creatorcontrib><creatorcontrib>Yafei Li</creatorcontrib><creatorcontrib>Pengfei Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuancheng Zou</au><au>Ye Qian</au><au>Yafei Li</au><au>Pengfei Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>GA neural network of the cost of the building graphic of the analysis and understanding</atitle><btitle>2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering</btitle><stitle>CMCE</stitle><date>2010-08</date><risdate>2010</risdate><volume>1</volume><spage>305</spage><epage>308</epage><pages>305-308</pages><issn>2159-6026</issn><isbn>9781424479573</isbn><isbn>1424479576</isbn><eisbn>1424479584</eisbn><eisbn>9781424479580</eisbn><eisbn>9781424479559</eisbn><eisbn>142447955X</eisbn><abstract>The costs of pre-building graphic in the construction project management is a very important job, based on neural network theory and the characteristics of the costs of building graphic, raised GA neural network to solve the cost of building graphic problem, applied BP network model and used GA to optimize the weight based on BP algorithm. The calculation examples showed that the accuracy of the cost estimation met the requirements basically.</abstract><pub>IEEE</pub><doi>10.1109/CMCE.2010.5610497</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2159-6026 |
ispartof | 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010, Vol.1, p.305-308 |
issn | 2159-6026 |
language | eng |
recordid | cdi_ieee_primary_5610497 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation model BP algorithm Gallium Neural network the cost of building graphic |
title | GA neural network of the cost of the building graphic of the analysis and understanding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=GA%20neural%20network%20of%20the%20cost%20of%20the%20building%20graphic%20of%20the%20analysis%20and%20understanding&rft.btitle=2010%20International%20Conference%20on%20Computer,%20Mechatronics,%20Control%20and%20Electronic%20Engineering&rft.au=Kuancheng%20Zou&rft.date=2010-08&rft.volume=1&rft.spage=305&rft.epage=308&rft.pages=305-308&rft.issn=2159-6026&rft.isbn=9781424479573&rft.isbn_list=1424479576&rft_id=info:doi/10.1109/CMCE.2010.5610497&rft_dat=%3Cieee_6IE%3E5610497%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424479584&rft.eisbn_list=9781424479580&rft.eisbn_list=9781424479559&rft.eisbn_list=142447955X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5610497&rfr_iscdi=true |