Stable tracking control to a nonlinear process via neural network model

A stable neural network control scheme for unknown non-linear systems is developed in this paper. While the control variable is optimised to minimize the performance index, convergence of the index is guaranteed asymptotically stable by a Lyapnov control law. The optimization is achieved using a gra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Peng Wang, Yuliang Cong, Xuebai Zang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A stable neural network control scheme for unknown non-linear systems is developed in this paper. While the control variable is optimised to minimize the performance index, convergence of the index is guaranteed asymptotically stable by a Lyapnov control law. The optimization is achieved using a gradient descent searching algorithm and is consequently slow. A fast convergence algorithm using an adaptive learning rate is employed to speed up the convergence. Application of the stable control to a single input single output (SISO) non-linear system is simulated. Simulation results demonstrate the effectiveness of the method.
ISSN:2159-6026
DOI:10.1109/CMCE.2010.5609844